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1. INTRODUCTION

This paper gives a linear projection X from the space of K times conti­
nuously differentiable functions on !R.N onto the space of polynomials of
degree :<.K on !R.N. The projection depends only on K + I fixed points
Xo ,... , XK E !R.N.

When N = I, xU) is the Hermite interpolating polynomial of I at
Xo , ... , XK E !R., i.e., the polynomial p of degree ~K for which I - p vanishes
at Xo ,... , XK , with repetitions in the Xi giving rise to a multiple zero of1- p
in the usual way. One method of cQmputing p is solving a system of K + 1
linear equations in K + 1 unknowns. The unknowns are the coefficients ofp
and the equations are P(Xk) = !(Xk) (k = 0,... , K) if Xo , ... , XK are distinct.

A straightforward generalization of the Hermite interpolation problem
to !R.N (N ~ 2) can be stated: if X o ,... , XK are points in !R.N and f: !R.N ---'>- !R.,
find a polynomial p: !R.N ---'>- !R., of degree :<.K, such that (p - f)(Xk) = °
for all k. Again, when Xo , ..•, XK are distinct, p can be found by solving a
system of K + I linear equations, but now there are (KiN) unknowns,
and p is no longer uniquely determined ifK ~ 1.

Additional conditions must be imposed on p to ensure that it is unique.
Glaeser, in his "schemes of interpolation" given in [4], requires that p lie
in a K + I-dimensional subspace of the space of polynomials of degree
:<'K. The choice of subspace is arbitrary among those subspaces of dimension
K + 1 which contain a solution of the linear system P(Xk) = !(Xk)
(k = 0, , K) for all! The only information needed to find p is the values of
I at Xo , , XK'

Here, we impose the conditions: p must depend linearly onland, if q(a/ax)
is a constant coefficient differential operator having terms all of the same order
k E {O,... , K}, then q(a/ax) (p - f) must equal zero at some point in the con-

* Supported in part by University of Toronto Open Scholarships and by the National
Research Council of Canada.

278
0021-9045/80/080278-16$02.00/0
Copyright © 1980 by Academic Press, rnc.
All rights of reproduction in any form reserved.



INTERPOLATION OF eK FUNCTIONS 279

vex hull of any k + 1 of the points Xo , .•. , XK • Thus, if j is a solution of the
equation q(8j8x)U) = 0, so is p.

The proof of the existence of X:jf--* p given here is an application of
Stokes' theorem. For example, let K = 1 and Xo = (0,0), Xl = (1,0) E 1R2.
If j is continuously differentiable, we require that p(xo) = f(xo), p(xl ) =
f(x1), and J~ (apj8y)(x, 0) dx = f~ (8fj8y)(x, 0) dx. Let q(a/8x, a/8y) =
a(8/8x) + b(8/8y), where a, b E IR. Then

( q (;x' ;y) (p - f)(x, 0) dx

= a«p - f)(I, 0) - (p - f)(0, 0))

+ b ( ;y (p - f)(x, 0) dx

by the mean value theorem, and this equals zero. Therefore, there exists
X E [0, 1] such that q(8/8x, a/8y) (p - f)(x, 0) = O.

Micchelli and Milman [6] give a proof of the existence of X by exhibiting
an explicit expression for xU), analogous to Newton's form of Hermite
interpolation.

Sections 3 and 4 prove the uniqueness, existence, and some properties
of X. Section 5 gives versions of X for complex analytic functions and real
differential forms. Section 6 is an application to a problem of convergence
of distributions and Section 7 contains a formula not involving integrals
for calculating xU) when j is a polynomial.

2.

We use the following notation: N = {O, 1, 2,...} and N+ = {l, 2,...}.
IfN E N+, IRNand CNrepresent the algebraic duals of IRN and CN. The dimen­
sion of a finite-dimensional vector space E over IR is written dim E.

If J is a finite set, card J is the number of elements in J. An indexed subset
of IRN

, {Xi}iEJ , has convex hull [XiliEJ'
For a polynomialp: IRN -4-1R or p: CN -- C, degp is its degree. If KE N,

PK(IRN) and PK(CN) are the Hausdorff vector spaces of real and complex
polynomials of degree ~K.

A multi-index is an element of NN. If

. ( • .) "'IN.J = .l1 ,••·,.IN E 1"1 , and

If also i E NN, then i ::;:;; j whenever in ::;:;; jn for all n. In this case, <D =
j!ji!(j - i)!. If X E IRN o~ (;-IY, then xi = X~l .,. xi.;. ali l/8xi is the differential
operator on IRN, alilj(ax~l ... ax~). QK(IRN) is the real vector space of con-
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stant coefficient differential operators which are homogeneous of order K.
That is, an element q of QK(IRN) is a linear combination of operators (jljl/oxj

such that Ij I = K.
~K(IRN) is the vector space of K-times continuously differentiable functions

f: IRN -+ IR. It has the topology of uniform convergence of derivatives of
order ~K on compact sets, given by the family of seminorms

1

0/
1£/ I

ff-* I~~ OXkf(X) ,
XEX

where X ranges over all compact subsets of IRN. .@K(IRN) is the vector space of
continuous linear functionals on ~K(IRN).

3.

This section proves uniqueness of the map x. of the following theorem.
Existence is proven in Section 4.

THEOREM 3.1. Let N E N+, KEN, and Xo ,... , XK E IRN, not necessarily
distinct. There is a unique X: ~K(IRN) -+ PK(IRN) satisfying:

(3.2) X is linear.

(3.3) for every f E ~K(IRN), every q E Qk(IRN), where k E {O,... , K},
and every JC {O,... , K} with card J = k + 1, there exists x E [Xj]iEJ such that
q(ojox)(xU) - f)(x) = o.

Remark 3.4. Let y be one of the points Xo ,... , XK , let J = {j E {O,... , K}
S.t. Xj = y}, and let mE {O,... , card J - I}. Property (3.3) implies, for every
f E ~K(IRN) and i E NN with I i I = m, that there exists x E [Xj]jEJ such that
(Oliljoxi)(XU) - f)(x) = O. That is, xU) - f is flat of order card J - 1
at y. If N = 1, this is precisely the property that characterizes the Hermite
interpolating polynomial of f because deg xU) ~ K. See Wendroff [8,
Chapter 1].

For all N, xU) is indeed an interpolation of f at Xo,... , XK because
(xU) - f)(xj) = 0 for allj.

PROPOSITION 3.5. If X: ~K(IRN) -+ PK(IRN) satisfies (3.2) and (3.3), it is
continuous.

Proof Choose 0 > 0 so small that, if p E PK(fR?N). satisfies the property
that, for every i E NN with I i I ~ K, there exists x E [Xj]jE{O... .,Kl (depending
on i} such that l(olil/oXi) p(X) I ~ 0, then p also satisfies the property that
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each of its coefficients is in absolute value ~ 1. By (3.3) applied to the differ­
ential operators oli l/ox\ if fE ~K([RN) such that

then the absolute value of each coefficient of x(f) is ~l.

Remark 3.6. The next proposition shows that if a function f in ~K([RN)

is a solution of the differential equation q(%x)f(x) ~ 0, whereq is a homo­
geneous constant coefficient operator, then x(f) is also a solution. In parti­
cular, iff is zero along a constant vector field, so is x(f).

PROPOSITION 3.7. Let KE N and suppose X: ~K([RN) ---->- PK([RN) satisfies
(3.3). Let q E Qk([RN), where k E {O, ... , K} andf E 'ifK(fRN) such that q(8/8x)(f)
is identically zero. Then q(8/ox)(x(f» is identically zero.

Proof Let x(f) = Po + '" +PK be the homogeneous decomposition
of x(f). It suffices to show for each 1E {k, ... , K}, that q(0/8X)(PI) is identically
zero. We use decreasing induction. Fix L E {k, ... , K} and make the inductive
hypothesis that q(8j8x)(PI) is identically zero for 1 > L. The hypothesis
is trivial if L = K.

By property (3.3), for each i E NN with I i I = L - k, there exists x E [RN

such that

i]lil (0 ) 81 i l (8 )
axi . q ax x(f)(x) = oxi . q ax f(x) = o.

Therefore,

iWI ( 0 ) Olil ( 0 )
8xi . q ax hex) = oxi . q ax (Po + '" + PK)(X) = 0,

because for 1< L, deg PI < the order of (Olil/oXi) . q(%x) and by the
inductive hypothesis for 1 > L.

But q(0/8x)(PL) is homogeneous of degree L - k and each of its derivatives
of order L - k is zero at some point in [RN, so it is identically zero.

Remark 3.8. Proposition 3.9 shows, if fE ~X(fRN) is constant on each
hyperplane in IRN which is parallel to some fixed hyperplane, then xC 1)
is also constant on each of the hyperplanes.

PROPOSITION 3.9. Let KEN and suppose X: ~XCIRN) ---->- PK(IRN) satisfies
(3.2) and (3.3). Let AE IRN be a linear functional on [RN and let fE ~K([R).

Then xU 0 A) = lj;(f) 0 It, where lj;(f) is the Hermite interpolating poly­
nomial off at A(Xo),"" "\(xx).



282 PAUL KERGIN

Proof We may assume A =1= O.
Let g: lR --+ lR be given by (g 0 A)(X) = xU 0 A)(X). To show g is well-

N
defined, fix wand x E lRN such that A(W) = A(X). Let q(o;ox) = Ln=1 Vn x
o;oxn E Ql(lRN), where Vn is the nth component of w - x. Since q(O;OX)(A)
is identically zero on lRN, so is q(o;ox)(f 0 A) if K E N+. Therefore
q(o;ox)(x(f 0 A)) is identically zero, by Proposition 3.7 if K E N+ and
because deg x(f 0 A) = 0 if K = O. In particular, x(fo A) is constant on
the line segment joining x to w.

Now g E PK(IR). For, choose any linear y: IR --+ lRN such that A 0 y is the
identity on IR. Then g = xU 0 A) 0 y.

Let y E IR be anyone of the points A(Xo),.'" A(XK), let J = {j E {O,... , K}
S.t. A(Xj) = y}, and let k = card J - 1. By Remark 3.4, it only remains to
show that g - fis flat of order k at y.

Fix mE {O,..., k} and choose n E{l,... , N} such that (o;oxn) A =1= O. By
property (3.3), there exists x E [Xj]j,,! such that (om;oxnm)(XU 0 A) ­
(fo A))(X) = O. Since goA = xUo A), (ornjoxnm)((g - f) 0 A)(X) = O. Ap­
plying the chain rule, (dmjdym)( g - f)(A(X)) . (oA/oxn)m = O. But x E [Xj]iE/
and A(Xj) = y for alljEJ, so A(X) = y and (dm;dym)(g - f)(y) = O.

COROLLARY 3.10. X is unique.

Proof Since the polynomials are a dense linear subspace of 'G'K(IRN)
(see Treves [7, p. 160]) and X is continuous (Proposition 3.5) it suffices to
show that the restriction of X to the space of polynomials in IRN is unique.
But every polynomial in lRN can be written as a sum of polynomials of the
form p 0 A, where AE IRN and p is a polynomial in lR. By Proposition 3.9,
X(p 0 A) = lj;(p) 0 A and the corollary follows by linearity of X.

4.

The existence of Xis proven here by defining a certain subspace of ~K(IRN),
showing that the dimension of this subspace is (K!N) = dim PK(lRN), and
requiring, for each of its elements T and each fE 'G'K(lRN), that
T(XU) - f) = o.

Remark 4.1. The following notation for differential forms is used in
this section and Section 5. For N E N+ and k, mEN, let Ak,m(IRN) be the
vector space of differential k forms on IRN which are m times continuously
differentiable. An element w of Ak,m(IRN) will be written

w = I fS1"'SkAsl II ." II ASk'
l<;;sl<"'<sk<;;N

where AI'"'' AN is a basis of IRN and fS
1
,,,Sk E 'G'm(IRN). For mE N+,
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d: Ak.m(IRN) -+ A7c+l.m-l(IRN) is the exterior derivative, given by

N 0
dw = L L 8 fsc·s.l\n A '\'1 A ... A ASk'

l<;;sl<"'<sk<;;N n=l Yn

where Yl ,... , YN E IRN is the dual basis of AI"'" AN , and 8/oYn = L~~l Ynl X

(o/OXt) E Ql(IRN), Ynt being the lth component ofYn .
Similarly, let Gk(IRN) denote the vector space, Qk(IRN) ® the kth exterior

product of IRN . An element fL of G'C(IRN) will be written

where qSl,,,Sk E Qk(IRN). Define 0: Gk(IRN) -+ Gk+l(IRN) by

N 0 0
8(fL) = L L 8' qSl'''Sk (-a:d An A AS1 1\ ••• A 11. 810'

1<;;S1<"'<Sk<;;N n=l Yn

LEMMA 4.2. Let N E N+, KEN, and X o ,... , XK E IRN independent (that
is, if ak E IR for k E {G,... , K} with Lf=o ak = 0 and L~o akxk = G, then
ak = Gfor all k).

For each k E {G,..., K}, let

be the bilinear map given by

<Pk ( L qS1'''8k(:x)AsIA'''I\Ask,f)
1<;;S1<'''<Sk<;;N

L QS1"'Sk ( :x) (f) AS1 1\ '" A ASk'
1<;;s1<"'<Sk<;;N

(<Pk is independent of the choice ofbasis AI"'" AN of \RN')
For .J C {G,..., K} with card.J = k + 1, let BJ = {T E gfK(\RN) S.t. there

exists fL E Gk(\RN) such that T(f) = Ir",.}. <Pk(fL,f) for every fE ~K(II~F')}.
1 jEJ

Also, let B¢ = {G} C gfK(\RN).
Then dim LJc{O, ....K} B J ~ CX1:N).

(Equality is proven in Corollary 4.5.)

Proof We show first, for each non-empty .J C {G,... , K}, that

) (
N- h

I B[ ~ k)'
ICJ

card1=k
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where k + 1 = card J. If k = 0, BJls the one-dimensional subspace of
£&K(/FgN) generated by the Dirac measure at some Xj, so suppose that
k E{l, ... , K}.

Choose an orientation for [Xj]jEJ and for every IC J with card 1= k,
give [Xi]iEI the orientation induced by that of [Xj]jEJ . Let if;: GIe(/FgN) ----* BJ
be given by

for f E <e'K(/FgN). if; is linear and onto by the definition of BJ .
Let C C /FgN be the subspace generated by {Xj - Xi s.t. i,j E J} so that

dim C = k, by the independence of {Xj}jEJ' Fix Yl ,..., h, a basis of C,
complete it to a basis Yl ,... , h , YIe+l ,..., YN of /FgN, and let AI,"" AN be the
dual basis. Also let

E = I L qSl"'Sk ( :X) As, /\ ... /\ ASk E GIe(/FgN) s.t.
l,;;sl<"'<s",;;N

QI2 .. ·k (:x) is of the form a~1 . r1(:x) + ..,+ O~k . rk (:x)
where r1 ,... , 'It E Qk-l(/FgN)I.

We will show for each f-t E E, that

if;(f-t) E L BI .
IeJ

cardI=k

For, fix '1 , ... , 'k E QIt-l(IRN ) such that qI2 ...It, the Al A ... /\ '\Ie term of f-t,
equals I:~=1 (a/aYi) . 'i(a/aX). Let v E GIe-1(/FgN) be given by

v = tl (_1)H1 'i (:X) A1/\ ... A '\i-1 /\ AH1 A ... A Ak.

The 1\ A •• , A Ale term of ov equals QI2...1e • Therefore

for allfE<e'K(/FgN) because Ai(C) = 0 for lE{k + 1,... , N}.
A straightforward calculation using the definitions of 1Jk , 0, and d shows

that 1Jiov,f) = d1J'<-1(V,j) for all fE <e'K(/FgN). By Stokes' theorem for
Euclidean simplices,
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Therefore

if;{jL) EO I BI
IC]

cardI~k

and if; induces a well-defined linear surjection

Gk(~N)JE -+ BIJB] (\ I BI .
leI

cardI~k

For each I EO NN-k with III = k, let

The representatives of {{Ll S.t. I EO I\IN-k, III = k} generate Gl'(~N)JE, so

dimBJJBjn I BI~(k+(N;k)-I)=(N;1).
Iel

cardI~k

285

Since there are (ftD subsets of {O,... , K} which have cardinality k ~ 1,

dim I BJ~(~~~)(N;l)+dim I BI ·
JC{O, ....K} IC{O, ... ,K}
cardJ~k+l cardI~k

Therefore,

. . K (K + 1) (N - 1)
dIm I BI~I k+l k /'

IC{O, ... ,K} k~O

using induction starting at dim LcardJ';;O BJ = O.
This finishes the proof since

as is well known; see, e.g., [9, p. 822].
The following lemma is used to prove property (3,3) of X.

LEMMA 4.3. Let N EO 1\1+, K EO N, and Xo , ... , XK EO ~N independent. For
J C {D, ... , K}, let BJ be as defined in Lemma 4.2, above.

Let g EO <tfK(JRN) such that T( g) = Dfor every TEO LJC{O .....K} BJ •

Then for every k E {D, ... , K}, every q E Qk(~N) and every J C {O,... , K}
with card J = k + 1, there exists x E [Xj]jEJ such that q(8J8x) g(x) = 0,

Proof Let C C JRN be the linear span of {Xj - Xi S.t. i,j E J}, let Yl " .. , Yk
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be a basis of C, complete it to a basis Yl ,..., Yk , Yk+l , , YN of IRN, and let
'\1 , ... , '\N E IRN be the dual basis. Let fJ' = q(OjOX),\1 A A '\k E Gk(IRN).

Choose an orientation for [Xj]jeJ and define

T: 'df'K(IRN) ~ IR by T(f) = 1 4>k(fJ',f),
["'jljEJ

where 4>k is defined in Lemma 4.2. Then T E BJ •

By hypothesis,

Since [Xj]JE] is connected, q(ojox) g(x) is continuous, and '\1 A .,. A '\k
is a determinant function on C, there exists x E [Xj]JE] such that q(ojox) x
g(x) = 0.

COROLLARY 4.4. Let p E PK(IRN) such that T( p) = ° for every
T E LJC{O.... ,K} BJ • Then p is the zero polynomial.

Proof By contradiction. Suppose degp = k E{O,... , K}. Then for every
i E NN with I i I = k, there exists x E [xo ,... , Xk] such that (Oliljoxi) p(x) = a,
so deg p :::;; k - 1.

COROLLARY 4.5. dim LJC{O... .,K} BJ = (Kit)·

Proof dim PK(IRN) = (Kit).

Remark 4.6. For N E N+, KEN and Xo ,..., XK E IRN independent,
Lemmas 4.2 and 4.3 imply the existence of X in Theorem 3.1. To see this,
for all J C {O,... , K}, let BJ C .@K(IRN) be the set defined in Lemma 4.2 and let
X: 'df'K(IRN) ~ PK(IRN) be given by the property that T(x(f) - f) = °for all
f E 'df'K( IRN) and all T E LJC{O... .,K} BJ. X is well-defined and linear because of
the duality between LJC{O., .. ,K} BJ and PK(IRN), proven in Lemma 4.2 and
Corollary 4.4.

Then by Lemma 4.3, for every f E 'df'K(IRN), every k E {O,... , K}, every
q(ojox) E Qk(IRN), and every J C {O, ... , K} with card J = k + 1, there exists
x E [Xj]JE] such that q(ojox)(x(f) - f) (x) = a.

Proofof Theorem 3.1. It only remains to generalize the preceding remark
to the case where Xo,..., XK are not necessarily distinct. For k E {a, ..., K},
let Yk = (Xlc, a, ..., a, 1, a, ..., a) E IRN+K+l, where the unit is in the
N + k + 1st place. Let 7T: IRN+K+l ~ IRN be the projection onto the first N
coordinates and let 7T*: 'df'K(IRN) ~ 'df'K(IRN+K+l) be given by 7T*(f) = f 0 7T.

Since Yo ,..., YK are independent, let if;: 'df'K(IRN+K+1) ~ PK(IRN+K+I) be the
map whose existence is proven in Remark 4.6 and define X: 'df'K(IRN)~ PK(IRN)
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by 1T* 0 X = ifi 01T*. X is well defined because for IE '?fK(IRN), 1T*(f) E
'?fK(IRN+K+l) is independent of the last K + I variables. By Proposition 3.7
(in case K ;;:, I), so is ifi 0 1T*(f). That is, ifi 0 1T*(f) is a polynomial of degree
at most K, in the first N coordinates of IRN+K+1 only.

Now choose IE '?fK(IRN), q(8j8x) EQk(IRN), where k E{O,... , K}, and let
J C {O,... , K} with card J = k + 1. By Remark 4.6, let y E [Yj]jeJ such that

q (:x) 17* 0 x(f)(y) = q (:x) ifi 017*(f)(y)

= q (:x) 17*(f)(y)

Then q(8j8x)(x(f) - f)(1T(Y)) = D and 17(Y) E [Xj]jEJ because 1T(Yj) = Xj
for j E {D, ... , K}.

Remark 4.7. Lemma 4.3 can be generalized to a statement about finite
families of functions and differential operators. Let S be a finite indexing
set and suppose {gs}SES C '?fK(IRN) such that T( gs) = 0 for every S E Sand
every T E LJclo, ... ,K} BJ . (BJ has been defined only when Xo , ... , XK are inde­
pendent.) Then, for every k E {D, ... , K}, every indexed set {qS}SES C Qk(IRN),
and every J C {O, ... , K} with card J = k + I, there exists x E [Xj]jEJ such that
LSES qsC8j8x) gsCx) = O.

Therefore, if {/S}SES C '?fK(IRN), then there exists x E [Xj]jeJ such that
LSES qsC8jox)(x(fs) - Is)(x) = D. The method of the preceding proof of
Theorem 3.1 can be used to prove this when Xo,... , XK are not necessarily
distinct.

As in Proposition 3.7, if LSES q.(8/8x)(fs) is identically zero, so is
LSES qsC8j8x)(x(fs))'

Remark 4.8. The proof of Lemma 4.2 shows that, if Xo ,... , Xl( are in
general position in IRN (that is, every subset of {xo ,... , XK} of cardinality
N + I is independent), then x(f) is well defined for IE '?fH(IRN), where
H = minimum {K, N - l}. This corresponds to the fact that the Hermite
interpolating polynomial x(f), at distinct points Xo ,... , Xl( E IR, is defined
for IE '?fO(IR). In this case X is, of course, Lagrange interpolation.

Remark 4.9. We will sometimes use the notation X"'o,,,xK to indicate the
dependence of X on the points of interpolation. For a fixed IE ,/&,K(IRN),
consider the symmetric mapping from (IRN)K+l to PK(IRN) which is given by
X o ,... , Xl( f-+ Xxo ...x/f). The techniques used here can also be used to show
that this mapping is continuous.

EXAMPLE 4.10. The conclusion of Theorem 3.1 cannot be strengthened
to include non-homogeneous differential operators. For, let K = 1,
X o = (0,0), and Xl = (1,0) E [R2. Define f(x, y) E '?fl([R2) by f(x, y) =
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(6x2
- 6x + 1) y - 6x2 + 6x. xU) is the zero polynomial. Yet if

q(8/8x, 8/8y) is the non-homogeneous operator f 1---+ 8f/8y + J,
q(8/8x, 8/8y)f(x, 0) = 1 for all x E [0, 1].

5.

This section gives versions of X for interpolating complex analytic func­
tions and differential forms. CN is identified with jR2N and a point
(Zl ,... , ZN) E CN has real and imaginary components (Xl'"'' XN ,Yl ,..., YN)'

PROPOSITION 5.1. Let N E N+, KEN, Zo ,... , ZK E CN, and let X be the
interpolation at (xo , Yo), ... , (XK' YK) E 1R2N given in Theorem 3.1.

For h: CN ~ C, K times continuously differentiable, let X(h) = xU) + iX( g),
where h = f + ig, real and imaginary parts.
Ifh is analytic, so is X(h), that is, X(h) E PK(CN).

Proof IfJ( = 0, xU) and X( g) are constants, so we may assume K E N+.
Then by Remark 4.7, sincef+ ig satisfies the Cauchy-Riemann equations,
8f/8xn - 8g/8Yn = °and 8f/8Yn + 8g/8xn - °for all n E {l, ... , N}, so does
xU) + iX( g).

Remark 5.2. For a fixed analytic h: CN ~ C, the mapping from
(CN)K+1 ~ PK(C), which is given by Zo ,... , ZK 1---+ Xzo ...zK(h) is continuous
because its teal and imaginary parts are continuous. See Remark 4.9.

Remark 5.3. Consider the case where N = 1 and Wo , ... , WK are distinct
complex numbers. If h: C ~ C is analytic, Xwo...wK(h) E PK(C) and
XwO' ..wih)(wk) = h(Wk) for k E {O,... , K}. As in the corresponding real case
(Lagrange interpolation) these properties uniquely determine Xwo ...wK(h).

Remark 5.4. The complex analytic analog of Proposition 3.9 holds.
Let X be the complex analytic interpolation at Zo ,... , ZK E CN. If A E CN ,

the dual of CN, and h: C ~ C is analytic, then X(h a A) = o/(h) a A, where
o/(h) is the complex analytic interpolation of h at the points A(Zo),'''' A(ZK) E C.
We omit a proof of this; it is similar to the proof of Proposition 3.9.

Remark 5.5. We define an interpolation of differential forms. Notation
is explained in Remark 4.1. Let N EN+, KEN, XO , ... , XK E IRN, and let X
be the interpolation ofTheorem 3.1 at Xo ,... , Xl( . For n E N, let X: An,K(IRN)~
{w E An,O(IRN) s.t. w is a polynomial of degree ~K} be given by

Remark 5.6. If w is a closed form (dw is identically zero), then so is
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x(w), by a proof which uses Remark 4.7 in a manner similar to the prbOf of
Proposition 5.1. However, if WE An.K(IRN), then dw E An+l.K-l(IRN) so X(dw)
is not defined in general and the statement "X(dw) = dX(w)" is false.

6.

An application of X is given. Consider a sequence {eT}eel\! of distributions
in £ZlO(jRN), such that card supp eT ~ K + 1 for aU c and limNoo

maxxeSUPPcT {I x !} = O. where sUPPeT is the support ofeT. That is, {eT} is a
sequence of linear combinations of ~K+ 1 Dirac measures whose supports
tend to the origin. Let E C ~K(jRN) be the solution set of some differential
equation q(ojox)(f) = 0, where q is a homogeneous operator and suppose
lime~co {eT(p)} exists for every pEE n PK(jRN). Under these hypotheses,
the following theorem says that lime~co {eT(f)} exists for every fE E.

THEOREM 6.1. Let N E N+ and KEN. Let {eT}eel\! be a sequence of distri­
butions in £ZlK(jRN), each having jinite support. For each c EN, let eJ = -1 +
card sUPPeT and let sUPPeT = {e Yo ,... , eYeJ} C IRN. For each c EN and
j E {O,... , J}, let eMj be the order of eT at e Yj, and suppose that
2:,j:o (eMj + 1) = K + 1 for all c and lime~co maXjeio""'cJ } IeYj I = O.

Explicitly for each c E N, there exists ajinite indexed set of real numbers

such that

eT(f) = L L
j~O mel\!N

Iml';;;cM ;

for all f E ~K(jRN).

Let F be any linear subspace of EB~~o Qk(jRN) such that, if q(ojox) E F, then
each homogeneous part of q is also in F, and let

\ a '
E = lfE ~K(jRN) S.t. q (ax) (f) = Ofor every q EFI·

Suppose that {eT(P)}eefli converges for every pEE n PK(jRN). Then, for
eachfE E, {eT(f)}cel\! converges to lime~co {cT(Xo(f)} where Xo(f) is the Taylor
polynomial off up to order K at the origin.

Proof Since F is generated by its homogeneous elements, Xo(f) E E and
1ime~oo {eT(Xo(f)} exists by the hypothesis on {eT}.

For each c EN, choose cxo " .. , cXK E jRN such that, for each j E{O,... , eJ},
cXk = eYj for eMj + 1 values of k E {O,... , K}. This is possible because
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2:1:'0 (eMj + 1) = K + 1. For each c EN, let eX be the interpolation of
Theorem 3.1 at eXo ,..., eXK •

Given € > 0, it suffices to find C EN so large that I eT(f) - T(Xo(f)/ ~ €

for all c ~ C, where T(Xo(f» = lime~oo {eT(Xif»}. Fix L > °so large
that, for each CE N and each pEE n PK(IRN) having the absolute value of
all coefficients ~1, I eT(p)1 ~ L.

By Remark 4.9, the mapping from (IRN)K+l to PK(IRN) given by Yo ,... , YK 1-+

Xyo .....yK(2Lf/€) is continuous. Choose C E N so large that, for each C ~ C,
(eX - Xo)(2Lf/€) has the absolute value of each of its coefficients ~l, and
also, for c ~ C, I eT(Xo(f» - T(Xo(f) I ~ €/2.

For all c, eT(f) = eT(eX( f» because f - eX(f) is flat of order eMj at
eYj for j E {O,... , eJ} (Remark 3.4). Therefore, for C ~ C,

I eT(f) - T(Xo(f» I ~ I eT(eX - Xo)(f) I

+ I eT(Xo(f» -'- T(Xo(f»j

because (eX - Xo)(2Lf/€) has the absolute value of each coefficient ~l

and also belongs to E, by Proposition 3.7, so

from the definition of L.

Remark 6.2. The special case of the preceeding theorem for F = {a},
E = ~K(IRN) was essentially given by Glaeser in [4J. Bloom [1J gives the com­
plex analytic version, which may also be proven using Proposition 5.1.
x(f) is the same as the interpolation used there whenever f E PK+1(([f). In
that case, the method used in [1J to interpolate f coincides with the method
given here in the next section.

7.

Proposition 7.3 can be used to find x(f) without evaluating integrals,
wheneverf is a polynomial.

Remark 7.1. Let Wo,... , WK be indeterminates. For MEN, there exist
unique polynomials.
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the ring of polynomials with real coefficients in K + 1 indeterminants, such
that

K

WkM = L oiWo ,... , Wk) . Wkz
z~o

for k E {D, ... , K}. (7.2)

For uniqueness, if TO , ••• , TX is another such family of polynomials, then by
Cramer's rule,

WK

for I E {O, , K} and the van der Monde determinant is not zero. For existence,
if ME {O, , K}, (JM = land (Jz = 0 .if I =1= M. If existence is proven up to
M ~ K, then the formula

K

W;~f+l = L TZ(WO,••• , WK) • W;:-z
z=o

for k E {O,... , K}

gives an inductive step, where -TZ is the elementary symmetric polynomial
of degree I + l.

If real numbers are substituted for Wo ,.." WK , then (Jz(xo ,.•. , Xl() is the
coefficient of XZ in the Hermite interpolating polynomial at Xo , ... , Xl( for
the function f E ~X(IR) given by f(x) = xM.

PROPOSITION 7.3. Let N E f\l+, K E f\l, and Xo ,..• , Xl( E IRN. Also, let ME f\l
and define (Jo ,... , (Jx E IR[Wo ,•.. , WK] by (7.2). Then, for each mE I\JN with
Iml=M,

where (Xk is the coefficient of Vk in

L
lCENN

M-K<lk!
k(,m

1m - k I! m-k

(m - k)! (XkX ,

(VI, ... , VN are indeterminates, Vk = V:1
••••• v:;V and the components

ofXk are (Xkl ,... , XkN) for k E {O,... , K}. XxO ... .,x
K

is interpolation at Xo , ..., Xx .)

Proof Let p: IR ~ IR be given by pew) = wM , so for every (AI'"'' AN) =
AE IRN and every (Yl"",YN) = yE IRN, p oA(y) = LmENN Im!<M CM!jm!) ym,\m.
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By Proposition 3.9,

Xxo ...xip 0 A)(Y)

= X"(xo)'''''(XK)(p)(A( y))

PAUL KERGIN

(7.4)

Im - kit Am-Ie
(m - k)!

K

.~ L: al(XOIAI + ... + XONAN , ... , XKIAI + ...+ KNAN)( YIAI + ... + yNAN)!.
1=0

Here, X,,(xo) ...,,(xK) is interpolation in~1 at A(xo),... , A(xK). For any fixed
m E NN with Im I = M and each k E NN such that M - K ~ Ik I and
k ~ m, the coefficient of y'n-Ie in the right-hand side of (7.4) is

a M_llel(XOlAI + ... + XONAN , ... , XKIAI + ... + XKNAN) .

= '" . I m - k I! Am-7c+i
1..J Cl.J ( k)' .iENN m - .

lil=llel

because aM-llel is homogeneous of degree Ik I. Hence the right-hand side
of (7.4) is

(7.5)

Now, let S = (Mf/-I) and choose Ai ,..., As E ~N andal , ... , as E ~ such
that L~=I asp 0 Ai y) = (M!/m!) y m for every y E ~N. That is, for j E NN

with I j I = M, L~=I asV = I if j =. m and equals zero otherwise. Then by
linearity of XXo,,,xK and applying (7.5),

(
M! m) ( ) _ '" Im - k I! m-Ie

XXO"'XK mr x Y - Ie£NN Cl.1e (m - k)! Y
M-K<I Ie I

Ie<m

for every y E ~N.

Remark 7.6. The complex version of Proposition 7.3 can be stated and
proven by writing C rather than ~ and referring to Remark 5.4 rather than
Proposition 3.9.
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