A Natural Interpolation of C^{κ} Functions

PAUL KERGIN*

Department of Mathematics, University of Toronto, Toronto, Canada Communicated by Carl de Boor

Received December 28, 1978

DEDICATED TO THE MEMORY OF P. TURÁN

1. INTRODUCTION

This paper gives a linear projection χ from the space of K times continuously differentiable functions on \mathbb{R}^N onto the space of polynomials of degree $\leq K$ on \mathbb{R}^N . The projection depends only on K + 1 fixed points $x_0, ..., x_K \in \mathbb{R}^N$.

When N = 1, $\chi(f)$ is the Hermite interpolating polynomial of f at $x_0, ..., x_K \in \mathbb{R}$, i.e., the polynomial p of degree $\leq K$ for which f - p vanishes at $x_0, ..., x_K$, with repetitions in the x_i giving rise to a multiple zero of f - p in the usual way. One method of computing p is solving a system of K + 1 linear equations in K + 1 unknowns. The unknowns are the coefficients of p and the equations are $p(x_k) = f(x_k)$ (k = 0, ..., K) if $x_0, ..., x_K$ are distinct.

A straightforward generalization of the Hermite interpolation problem to \mathbb{R}^N $(N \ge 2)$ can be stated: if $x_0, ..., x_K$ are points in \mathbb{R}^N and $f: \mathbb{R}^N \to \mathbb{R}$, find a polynomial $p: \mathbb{R}^N \to \mathbb{R}$, of degree $\leqslant K$, such that $(p - f)(x_k) = 0$ for all k. Again, when $x_0, ..., x_K$ are distinct, p can be found by solving a system of K + 1 linear equations, but now there are $\binom{K+N}{K}$ unknowns, and p is no longer uniquely determined if $K \ge 1$.

Additional conditions must be imposed on p to ensure that it is unique. Glaeser, in his "schemes of interpolation" given in [4], requires that p lie in a K + 1-dimensional subspace of the space of polynomials of degree $\leq K$. The choice of subspace is arbitrary among those subspaces of dimension K + 1 which contain a solution of the linear system $p(x_k) = f(x_k)$ (k = 0, ..., K) for all f. The only information needed to find p is the values of f at $x_0, ..., x_K$.

Here, we impose the conditions: p must depend linearly on f and, if $q(\partial/\partial x)$ is a constant coefficient differential operator having terms all of the same order $k \in \{0, ..., K\}$, then $q(\partial/\partial x) (p - f)$ must equal zero at some point in the con-

* Supported in part by University of Toronto Open Scholarships and by the National Research Council of Canada.

vex hull of any k + 1 of the points $x_0, ..., x_K$. Thus, if f is a solution of the equation $q(\partial/\partial x)(f) \equiv 0$, so is p.

The proof of the existence of $\chi: f \mapsto p$ given here is an application of Stokes' theorem. For example, let K = 1 and $x_0 = (0, 0)$, $x_1 = (1, 0) \in \mathbb{R}^2$. If f is continuously differentiable, we require that $p(x_0) = f(x_0)$, $p(x_1) = f(x_1)$, and $\int_0^1 (\partial p/\partial y)(x, 0) dx = \int_0^1 (\partial f/\partial y)(x, 0) dx$. Let $q(\partial/\partial x, \partial/\partial y) = a(\partial/\partial x) + b(\partial/\partial y)$, where $a, b \in \mathbb{R}$. Then

$$\int_0^1 q\left(\frac{\partial}{\partial x}, \frac{\partial}{\partial y}\right) (p-f)(x, 0) dx$$

= $a((p-f)(1, 0) - (p-f)(0, 0))$
+ $b\int_0^1 \frac{\partial}{\partial y} (p-f)(x, 0) dx$

by the mean value theorem, and this equals zero. Therefore, there exists $x \in [0, 1]$ such that $q(\partial/\partial x, \partial/\partial y) (p - f)(x, 0) = 0$.

Micchelli and Milman [6] give a proof of the existence of χ by exhibiting an explicit expression for $\chi(f)$, analogous to Newton's form of Hermite interpolation.

Sections 3 and 4 prove the uniqueness, existence, and some properties of χ . Section 5 gives versions of χ for complex analytic functions and real differential forms. Section 6 is an application to a problem of convergence of distributions and Section 7 contains a formula not involving integrals for calculating $\chi(f)$ when f is a polynomial.

2.

We use the following notation: $\mathbb{N} = \{0, 1, 2, ...\}$ and $\mathbb{N}^+ = \{1, 2, ...\}$. If $N \in \mathbb{N}^+$, \mathbb{R}_N and \mathbb{C}_N represent the algebraic duals of \mathbb{R}^N and \mathbb{C}^N . The dimension of a finite-dimensional vector space E over \mathbb{R} is written dim E.

If J is a finite set, card J is the number of elements in J. An indexed subset of \mathbb{R}^N , $\{x_j\}_{j\in J}$, has convex hull $[x_j]_{j\in J}$.

For a polynomial $p: \mathbb{R}^N \to \mathbb{R}$ or $p: \mathbb{C}^N \to \mathbb{C}$, deg p is its degree. If $K \in \mathbb{N}$, $P^{K}(\mathbb{R}^N)$ and $P^{K}(\mathbb{C}^N)$ are the Hausdorff vector spaces of real and complex polynomials of degree $\leq K$.

A multi-index is an element of \mathbb{N}^N . If

$$j = (j_1, ..., j_N) \in \mathbb{N}^N$$
, $|j| = j_1 + \dots + j_N$ and $j! = j_1! \dots j_N!$.

If also $i \in \mathbb{N}^N$, then $i \leq j$ whenever $i_n \leq j_n$ for all *n*. In this case, $\binom{j}{i} = j!/i!(j-i)!$. If $x \in \mathbb{R}^N$ or \mathbb{C}^N , then $x^j = x_1^{j_1} \cdots x_N^{j_N}$. $\partial^{|j|}/\partial x^j$ is the differential operator on \mathbb{R}^N , $\partial^{|j|}/(\partial x_1^{j_1} \cdots \partial x_N^{j_N})$. $Q^{\mathcal{K}}(\mathbb{R}^N)$ is the real vector space of con-

PAUL KERGIN

stant coefficient differential operators which are homogeneous of order K. That is, an element q of $Q^{K}(\mathbb{R}^{N})$ is a linear combination of operators $\partial^{|j|}/\partial x^{j}$ such that |j| = K.

 $\mathscr{C}^{K}(\mathbb{R}^{N})$ is the vector space of K-times continuously differentiable functions $f: \mathbb{R}^{N} \to \mathbb{R}$. It has the topology of uniform convergence of derivatives of order $\leq K$ on compact sets, given by the family of seminorms

$$f \mapsto \max_{\substack{|k| \leqslant K \\ x \in X}} \left| \frac{\partial^{|k|}}{\partial x^k} f(x) \right|,$$

where X ranges over all compact subsets of \mathbb{R}^N . $\mathscr{D}^K(\mathbb{R}^N)$ is the vector space of continuous linear functionals on $\mathscr{C}^K(\mathbb{R}^N)$.

3.

This section proves uniqueness of the map χ of the following theorem. Existence is proven in Section 4.

THEOREM 3.1. Let $N \in \mathbb{N}^+$, $K \in \mathbb{N}$, and $x_0, ..., x_K \in \mathbb{R}^N$, not necessarily distinct. There is a unique $\chi: \mathscr{C}^K(\mathbb{R}^N) \to P^K(\mathbb{R}^N)$ satisfying:

(3.2) χ is linear.

(3.3) for every $f \in \mathcal{C}^{K}(\mathbb{R}^{N})$, every $q \in Q^{k}(\mathbb{R}^{N})$, where $k \in \{0,..., K\}$, and every $J \subset \{0,..., K\}$ with card J = k + 1, there exists $x \in [x_{j}]_{j \in J}$ such that $q(\partial/\partial x)(\chi(f) - f)(x) = 0$.

Remark 3.4. Let y be one of the points $x_0, ..., x_K$, let $J = \{j \in \{0, ..., K\}$ s.t. $x_j = y\}$, and let $m \in \{0, ..., \text{ card } J - 1\}$. Property (3.3) implies, for every $f \in \mathscr{C}^K(\mathbb{R}^N)$ and $i \in \mathbb{N}^N$ with |i| = m, that there exists $x \in [x_j]_{j \in J}$ such that $(\partial^{\lfloor i \rfloor}/\partial x^i)(\chi(f) - f)(x) = 0$. That is, $\chi(f) - f$ is flat of order card J - 1 at y. If N = 1, this is precisely the property that characterizes the Hermite interpolating polynomial of f because deg $\chi(f) \leq K$. See Wendroff [8, Chapter 1].

For all N, $\chi(f)$ is indeed an interpolation of f at $x_0, ..., x_K$ because $(\chi(f) - f)(x_j) = 0$ for all j.

PROPOSITION 3.5. If $\chi: \mathscr{C}^{K}(\mathbb{R}^{N}) \to P^{K}(\mathbb{R}^{N})$ satisfies (3.2) and (3.3), it is continuous.

Proof. Choose $\delta > 0$ so small that, if $p \in P^{K}(\mathbb{R}^{N})$ satisfies the property that, for every $i \in \mathbb{N}^{N}$ with $|i| \leq K$, there exists $x \in [x_{i}]_{i \in \{0,...,K\}}$ (depending on i) such that $|(\partial^{|i|}/\partial x^{i}) p(x)| \leq \delta$, then p also satisfies the property that

each of its coefficients is in absolute value ≤ 1 . By (3.3) applied to the differential operators $\partial^{|i|}/\partial x^i$, if $f \in \mathscr{C}^{K}(\mathbb{R}^N)$ such that

$$\max_{\substack{i \in \mathbb{N}^N, |i| \leqslant K \\ x \in [x_j]_{j \in \{0, \dots, K\}}}} \left\{ \left| \frac{\partial^{|i|}}{\partial x^i} f(x) \right| \right\} \leqslant \delta$$

then the absolute value of each coefficient of $\chi(f)$ is ≤ 1 .

Remark 3.6. The next proposition shows that if a function f in $\mathscr{C}^{\kappa}(\mathbb{R}^{N})$ is a solution of the differential equation $q(\partial/\partial x) f(x) \equiv 0$, where q is a homogeneous constant coefficient operator, then $\chi(f)$ is also a solution. In particular, if f is zero along a constant vector field, so is $\chi(f)$.

PROPOSITION 3.7. Let $K \in \mathbb{N}$ and suppose $\chi: \mathscr{C}^{\kappa}(\mathbb{R}^{N}) \to P^{\kappa}(\mathbb{R}^{N})$ satisfies (3.3). Let $q \in Q^{k}(\mathbb{R}^{N})$, where $k \in \{0,..., K\}$ and $f \in \mathscr{C}^{\kappa}(\mathbb{R}^{N})$ such that $q(\partial/\partial x)(f)$ is identically zero. Then $q(\partial/\partial x)(\chi(f))$ is identically zero.

Proof. Let $\chi(f) = p_0 + \cdots + p_K$ be the homogeneous decomposition of $\chi(f)$. It suffices to show for each $l \in \{k, \dots, K\}$, that $q(\partial/\partial x)(p_l)$ is identically zero. We use decreasing induction. Fix $L \in \{k, \dots, K\}$ and make the inductive hypothesis that $q(\partial/\partial x)(p_l)$ is identically zero for l > L. The hypothesis is trivial if L = K.

By property (3.3), for each $i \in \mathbb{N}^N$ with |i| = L - k, there exists $x \in \mathbb{R}^N$ such that

$$\frac{\partial^{|i|}}{\partial x^i} \cdot q\left(\frac{\partial}{\partial x}\right) \chi(f)(x) = \frac{\partial^{|i|}}{\partial x^i} \cdot q\left(\frac{\partial}{\partial x}\right) f(x) = 0.$$

Therefore,

$$\frac{\partial^{|i|}}{\partial x^i} \cdot q\left(\frac{\partial}{\partial x}\right) p_L(x) = \frac{\partial^{|i|}}{\partial x^i} \cdot q\left(\frac{\partial}{\partial x}\right) (p_0 + \dots + p_K)(x) = 0,$$

because for l < L, deg $p_l <$ the order of $(\partial^{|i|}/\partial x^i) \cdot q(\partial^l \partial x)$ and by the inductive hypothesis for l > L.

But $q(\partial/\partial x)(p_L)$ is homogeneous of degree L - k and each of its derivatives of order L - k is zero at some point in \mathbb{R}^N , so it is identically zero.

Remark 3.8. Proposition 3.9 shows, if $f \in \mathscr{C}^{\kappa}(\mathbb{R}^{N})$ is constant on each hyperplane in \mathbb{R}^{N} which is parallel to some fixed hyperplane, then $\chi(f)$ is also constant on each of the hyperplanes.

PROPOSITION 3.9. Let $K \in \mathbb{N}$ and suppose $\chi: \mathscr{C}^{\kappa}(\mathbb{R}^{N}) \to P^{\kappa}(\mathbb{R}^{N})$ satisfies (3.2) and (3.3). Let $\lambda \in \mathbb{R}_{N}$ be a linear functional on \mathbb{R}^{N} and let $f \in \mathscr{C}^{\kappa}(\mathbb{R})$. Then $\chi(f \circ \lambda) = \psi(f) \circ \lambda$, where $\psi(f)$ is the Hermite interpolating polynomial of f at $\lambda(x_{0}),...,\lambda(x_{\kappa})$. *Proof.* We may assume $\lambda \neq 0$.

Let $g: \mathbb{R} \to \mathbb{R}$ be given by $(g \circ \lambda)(x) = \chi(f \circ \lambda)(x)$. To show g is welldefined, fix w and $x \in \mathbb{R}^N$ such that $\lambda(w) = \lambda(x)$. Let $q(\partial/\partial x) = \sum_{n=1}^N v_n \times$ $\partial/\partial x_n \in Q^1(\mathbb{R}^N)$, where v_n is the *n*th component of w - x. Since $q(\partial/\partial x)(\lambda)$ is identically zero on \mathbb{R}^N , so is $q(\partial/\partial x)(f \circ \lambda)$ if $K \in \mathbb{N}^+$. Therefore $q(\partial/\partial x)(\chi(f \circ \lambda))$ is identically zero, by Proposition 3.7 if $K \in \mathbb{N}^+$ and because deg $\chi(f \circ \lambda) = 0$ if K = 0. In particular, $\chi(f \circ \lambda)$ is constant on the line segment joining x to w.

Now $g \in P^{\kappa}(\mathbb{R})$. For, choose any linear $\gamma \colon \mathbb{R} \to \mathbb{R}^{N}$ such that $\lambda \circ \gamma$ is the identity on \mathbb{R} . Then $g = \chi(f \circ \lambda) \circ \gamma$.

Let $y \in \mathbb{R}$ be any one of the points $\lambda(x_0), ..., \lambda(x_k)$, let $J = \{j \in \{0, ..., K\}$ s.t. $\lambda(x_j) = y\}$, and let k = card J - 1. By Remark 3.4, it only remains to show that g - f is flat of order k at y.

Fix $m \in \{0,...,k\}$ and choose $n \in \{1,...,N\}$ such that $(\partial/\partial x_n) \lambda \neq 0$. By property (3.3), there exists $x \in [x_j]_{j \in J}$ such that $(\partial^m/\partial x_n^m)(\chi(f \circ \lambda) - (f \circ \lambda))(x) = 0$. Since $g \circ \lambda = \chi(f \circ \lambda)$, $(\partial^m/\partial x_n^m)((g - f) \circ \lambda)(x) = 0$. Applying the chain rule, $(d^m/dy^m)(g - f)(\lambda(x)) \cdot (\partial\lambda/\partial x_n)^m = 0$. But $x \in [x_j]_{j \in J}$ and $\lambda(x_j) = y$ for all $j \in J$, so $\lambda(x) = y$ and $(d^m/dy^m)(g - f)(\chi) = 0$.

COROLLARY 3.10. χ is unique.

Proof. Since the polynomials are a dense linear subspace of $\mathscr{C}^{\kappa}(\mathbb{R}^{N})$ (see Treves [7, p. 160]) and χ is continuous (Proposition 3.5) it suffices to show that the restriction of χ to the space of polynomials in \mathbb{R}^{N} is unique. But every polynomial in \mathbb{R}^{N} can be written as a sum of polynomials of the form $p \circ \lambda$, where $\lambda \in \mathbb{R}_{N}$ and p is a polynomial in \mathbb{R} . By Proposition 3.9, $\chi(p \circ \lambda) = \psi(p) \circ \lambda$ and the corollary follows by linearity of χ .

4.

The existence of χ is proven here by defining a certain subspace of $\mathscr{D}^{K}(\mathbb{R}^{N})$, showing that the dimension of this subspace is $\binom{K+N}{K} = \dim P^{K}(\mathbb{R}^{N})$, and requiring, for each of its elements T and each $f \in \mathscr{C}^{K}(\mathbb{R}^{N})$, that $T(\chi(f) - f) = 0$.

Remark 4.1. The following notation for differential forms is used in this section and Section 5. For $N \in \mathbb{N}^+$ and $k, m \in \mathbb{N}$, let $A^{k,m}(\mathbb{R}^N)$ be the vector space of differential k forms on \mathbb{R}^N which are m times continuously differentiable. An element ω of $A^{k,m}(\mathbb{R}^N)$ will be written

$$\omega = \sum_{1 \leqslant s_1 < \cdots < s_k \leqslant N} f_{s_1 \cdots s_k} \lambda_{s_1} \wedge \cdots \wedge \lambda_{s_k},$$

where $\lambda_1, ..., \lambda_N$ is a basis of \mathbb{R}_N and $f_{s_1...s_k} \in \mathscr{C}^m(\mathbb{R}^N)$. For $m \in \mathbb{N}^+$,

d: $A^{k,m}(\mathbb{R}^N) \to A^{k+1,m-1}(\mathbb{R}^N)$ is the exterior derivative, given by

$$d\omega = \sum_{1 \leqslant s_1 < \cdots < s_k \leqslant N} \sum_{n=1}^N \frac{\partial}{\partial y_n} f_{s_1 \cdots s_k} \lambda_n \wedge \lambda_{s_1} \wedge \cdots \wedge \lambda_{s_k},$$

where $y_1, ..., y_N \in \mathbb{R}^N$ is the dual basis of $\lambda_1, ..., \lambda_N$, and $\partial/\partial y_n = \sum_{l=1}^N y_{nl} \times (\partial/\partial x_l) \in Q^1(\mathbb{R}^N)$, y_{nl} being the *l*th component of y_n .

Similarly, let $G^k(\mathbb{R}^N)$ denote the vector space, $Q^k(\mathbb{R}^N) \otimes$ the *k*th exterior product of \mathbb{R}_N . An element μ of $G^k(\mathbb{R}^N)$ will be written

$$\mu = \sum_{1 \leqslant s_1 < \cdots < s_k \leqslant N} q_{s_1 \cdots s_k} \left(\frac{\partial}{\partial x} \right) \lambda_{s_1} \wedge \cdots \wedge \lambda_{s_k} \,,$$

where $q_{s_1...s_k} \in Q^k(\mathbb{R}^N)$. Define $\delta: G^k(\mathbb{R}^N) \to G^{k+1}(\mathbb{R}^N)$ by

$$\delta(\mu) = \sum_{1\leqslant s_1<\cdots< s_k\leqslant N}\sum_{n=1}^Nrac{\partial}{\partial y_n}\cdot q_{s_1\cdots s_k}\left(rac{\partial}{\partial x}
ight)\lambda_n\wedge\lambda_{s_1}\wedge\cdots\wedge\lambda_{s_k}.$$

LEMMA 4.2. Let $N \in \mathbb{N}^+$, $K \in \mathbb{N}$, and $x_0, ..., x_K \in \mathbb{R}^N$ independent (that is, if $a_k \in \mathbb{R}$ for $k \in \{0, ..., K\}$ with $\sum_{k=0}^{K} a_k = 0$ and $\sum_{k=0}^{K} a_k x_k = 0$, then $a_k = 0$ for all k).

For each $k \in \{0, ..., K\}$ *, let*

$$\phi_k: G^k(\mathbb{R}^N) \times \mathscr{C}^k(\mathbb{R}^N) \to A^{k,K-k}(\mathbb{R}^N)$$

be the bilinear map given by

$$\begin{split} \phi_k \left(\sum_{1 \leqslant s_1 < \cdots < s_k \leqslant N} q_{s_1 \cdots s_k} \left(\frac{\partial}{\partial x} \right) \lambda_{s_1} \wedge \cdots \wedge \lambda_{s_k}, f \right) \\ &= \sum_{1 \leqslant s_1 < \cdots < s_k \leqslant N} q_{s_1 \cdots s_k} \left(\frac{\partial}{\partial x} \right) (f) \lambda_{s_1} \wedge \cdots \wedge \lambda_{s_k}. \end{split}$$

 $(\phi_k \text{ is independent of the choice of basis } \lambda_1, ..., \lambda_N \text{ of } \mathbb{R}_N)$

For $J \subseteq \{0,...,K\}$ with card J = k + 1, let $B_J = \{T \in \mathscr{D}^{K}(\mathbb{R}^{N}) \text{ s.t. there}$ exists $\mu \in G^{k}(\mathbb{R}^{N})$ such that $T(f) = \int_{[x_j]_{j \in J}} \phi_k(\mu, f)$ for every $f \in \mathscr{C}^{K}(\mathbb{R}^{N})\}$. Also, let $B_{\phi} = \{0\} \subset \mathscr{D}^{K}(\mathbb{R}^{N})$.

Then dim $\sum_{J \subset \{0,\ldots,K\}} B_J \leq \binom{K+N}{K}$.

(Equality is proven in Corollary 4.5.)

Proof. We show first, for each non-empty $J \subseteq \{0, ..., K\}$, that

$$\dim \left(B_J/B_J \cap \sum_{\substack{I \subset J \\ \text{card}I = k}} B_I \right) \leqslant \binom{N-1}{k},$$

PAUL KERGIN

where k + 1 = card J. If k = 0, B_j is the one-dimensional subspace of $\mathscr{D}^{K}(\mathbb{R}^{N})$ generated by the Dirac measure at some x_j , so suppose that $k \in \{1, ..., K\}$.

Choose an orientation for $[x_j]_{j\in J}$ and for every $I \subseteq J$ with card I = k, give $[x_i]_{i\in I}$ the orientation induced by that of $[x_j]_{j\in J}$. Let $\psi: G^k(\mathbb{R}^N) \to B_J$ be given by

$$\psi(\mu)(f) = \int_{[x_j]_{j\in J}} \phi_k(\mu, f)$$

for $f \in \mathscr{C}^{\kappa}(\mathbb{R}^{N})$. ψ is linear and onto by the definition of B_{J} .

Let $C \subset \mathbb{R}^N$ be the subspace generated by $\{x_j - x_i \text{ s.t. } i, j \in J\}$ so that dim C = k, by the independence of $\{x_j\}_{j \in J}$. Fix y_1, \dots, y_k , a basis of C, complete it to a basis y_1, \dots, y_k , y_{k+1}, \dots, y_N of \mathbb{R}^N , and let $\lambda_1, \dots, \lambda_N$ be the dual basis. Also let

$$E = \left\{ \sum_{1 \leqslant s_1 < \dots < s_k \leqslant N} q_{s_1 \dots s_k} \left(\frac{\partial}{\partial x} \right) \lambda_{s_1} \wedge \dots \wedge \lambda_{s_k} \in G^k(\mathbb{R}^N) \text{ s.t.} \right.$$
$$q_{12\dots k} \left(\frac{\partial}{\partial x} \right) \text{ is of the form } \frac{\partial}{\partial y_1} \cdot r_1 \left(\frac{\partial}{\partial x} \right) + \dots + \frac{\partial}{\partial y_k} \cdot r_k \left(\frac{\partial}{\partial x} \right)$$
where $r_1, \dots, r_k \in Q^{k-1}(\mathbb{R}^N) \right\}.$

We will show for each $\mu \in E$, that

$$\psi(\mu) \in \sum_{\substack{I \subset J \\ ext{card}I = k}} B_I$$
 .

For, fix $r_1, ..., r_k \in Q^{k-1}(\mathbb{R}^N)$ such that $q_{12...k}$, the $\lambda_1 \wedge \cdots \wedge \lambda_k$ term of μ , equals $\sum_{l=1}^k (\partial/\partial y_l) \cdot r_l(\partial/\partial x)$. Let $\nu \in G^{k-1}(\mathbb{R}^N)$ be given by

$$\nu = \sum_{l=1}^{k} (-1)^{l+1} r_l \left(\frac{\partial}{\partial x}\right) \lambda_1 \wedge \cdots \wedge \lambda_{l-1} \wedge \lambda_{l+1} \wedge \cdots \wedge \lambda_k.$$

The $\lambda_1 \wedge \cdots \wedge \lambda_k$ term of $\delta \nu$ equals $q_{12...k}$. Therefore

$$\int_{[x_j]_{j\in J}}\phi_k(\mu,f)=\int_{[x_j]_{j\in J}}\phi_k(\delta\nu,f)$$

for all $f \in \mathscr{C}^{\kappa}(\mathbb{R}^N)$ because $\lambda_l(C) = 0$ for $l \in \{k + 1, ..., N\}$.

A straightforward calculation using the definitions of ϕ_k , δ , and d shows that $\phi_k(\delta\nu, f) = d\phi_{k-1}(\nu, f)$ for all $f \in \mathscr{C}^{\kappa}(\mathbb{R}^N)$. By Stokes' theorem for Euclidean simplices,

$$\int_{[x_j]_{j\in J}} \phi_k(\mu, f) = \int_{[x_j]_{j\in J}} d\phi_{k-1}(\nu, f) = \sum_{\substack{I\subset J \\ \text{card}I = k}} \int_{[x_i]_{i\in I}} \phi_{k-1}(\nu, f).$$

284

Therefore

$$\psi(\mu) \in \sum_{\substack{I \subset J \\ \mathrm{card}I = k}} B_I$$

and ψ induces a well-defined linear surjection

$$G^k(\mathbb{R}^N)/E o B_J/B_J \cap \sum_{\substack{I \subset J \ \mathrm{card}I = k}} B_I$$
 .

For each $l \in \mathbb{N}^{N-k}$ with |l| = k, let

$$\mu_l = \frac{\partial^k}{\partial y_{k+1}^{l_1} \cdots \partial y_N^{l_{N-k}}} \lambda_1 \wedge \cdots \wedge \lambda_k \in G^k(\mathbb{R}^N).$$

The representatives of $\{\mu_l \text{ s.t. } l \in \mathbb{N}^{N-k}, |l| = k\}$ generate $G^k(\mathbb{R}^N)/E$, so

dim
$$B_J/B_J \cap \sum_{\substack{I \subset J \\ cardI=k}} B_I \leq {\binom{k+(N-k)-1}{k}} = {\binom{N-1}{k}}.$$

Since there are $\binom{K+1}{k+1}$ subsets of $\{0, \dots, K\}$ which have cardinality k + 1,

$$\dim \sum_{\substack{J \subset \{0, \dots, K\} \\ \operatorname{card} J \leqslant k+1}} B_J \leqslant {\binom{K+1}{k+1}} {\binom{N-1}{k}} + \dim \sum_{\substack{I \subset \{0, \dots, K\} \\ \operatorname{card} I \leqslant k}} B_I$$

Therefore,

dim
$$\sum_{J \subset \{0,\ldots,K\}} B_J \leqslant \sum_{k=0}^{K} {K+1 \choose k+1} {N-1 \choose k}$$
,

using induction starting at dim $\sum_{\text{card } J \leq 0} B_J = 0$.

This finishes the proof since

$$\sum_{k=0}^{K} \binom{K+1}{k+1} \binom{N-1}{k} = \binom{K+N}{N},$$

as is well known; see, e.g., [9, p. 822].

The following lemma is used to prove property (3.3) of χ .

LEMMA 4.3. Let $N \in \mathbb{N}^+$, $K \in \mathbb{N}$, and $x_0, ..., x_K \in \mathbb{R}^N$ independent. For $J \subseteq \{0, ..., K\}$, let B_J be as defined in Lemma 4.2, above.

Let $g \in \mathscr{C}^{K}(\mathbb{R}^{N})$ such that T(g) = 0 for every $T \in \sum_{J \subset \{0,...,K\}} B_{J}$.

Then for every $k \in \{0,..., K\}$, every $q \in Q^k(\mathbb{R}^N)$ and every $J \subseteq \{0,..., K\}$ with card J = k + 1, there exists $x \in [x_j]_{j \in J}$ such that $q(\partial/\partial x) g(x) = 0$.

Proof. Let $C \subseteq \mathbb{R}^N$ be the linear span of $\{x_j - x_i \text{ s.t. } i, j \in J\}$, let $y_1, ..., y_k$

be a basis of C, complete it to a basis $y_1, ..., y_k$, $y_{k+1}, ..., y_N$ of \mathbb{R}^N , and let $\lambda_1, ..., \lambda_N \in \mathbb{R}_N$ be the dual basis. Let $\mu = q(\partial/\partial x) \lambda_1 \wedge \cdots \wedge \lambda_k \in G^k(\mathbb{R}^N)$.

Choose an orientation for $[x_j]_{j \in J}$ and define

$$T: \mathscr{C}^{K}(\mathbb{R}^{N}) \to \mathbb{R}$$
 by $T(f) = \int_{[x_{j}]_{j \in J}} \phi_{k}(\mu, f),$

where ϕ_k is defined in Lemma 4.2. Then $T \in B_J$.

By hypothesis,

$$T(g) = \int_{[x_j]_{j\in J}} q\left(\frac{\partial}{\partial x}\right) g(x) \,\lambda_1 \wedge \cdots \wedge \lambda_k = 0.$$

Since $[x_j]_{j\in J}$ is connected, $q(\partial/\partial x) g(x)$ is continuous, and $\lambda_1 \wedge \cdots \wedge \lambda_k$ is a determinant function on C, there exists $x \in [x_j]_{j\in J}$ such that $q(\partial/\partial x) \times g(x) = 0$.

COROLLARY 4.4. Let $p \in P^{\kappa}(\mathbb{R}^N)$ such that T(p) = 0 for every $T \in \sum_{J \subset \{0,...,K\}} B_J$. Then p is the zero polynomial.

Proof. By contradiction. Suppose deg $p = k \in \{0,..., K\}$. Then for every $i \in \mathbb{N}^N$ with |i| = k, there exists $x \in [x_0, ..., x_k]$ such that $(\partial^{|i|}/\partial x^i) p(x) = 0$, so deg $p \leq k - 1$.

COROLLARY 4.5. dim $\sum_{J \in \{0,...,K\}} B_J = \binom{K+N}{K}$. *Proof.* dim $P^K(\mathbb{R}^N) = \binom{K+N}{K}$.

Remark 4.6. For $N \in \mathbb{N}^+$, $K \in \mathbb{N}$ and $x_0, ..., x_K \in \mathbb{R}^N$ independent, Lemmas 4.2 and 4.3 imply the existence of χ in Theorem 3.1. To see this, for all $J \subset \{0, ..., K\}$, let $B_J \subset \mathscr{D}^K(\mathbb{R}^N)$ be the set defined in Lemma 4.2 and let $\chi: \mathscr{C}^K(\mathbb{R}^N) \to P^K(\mathbb{R}^N)$ be given by the property that $T(\chi(f) - f) = 0$ for all $f \in \mathscr{C}^K(\mathbb{R}^N)$ and all $T \in \sum_{J \subset \{0, ..., K\}} B_J$. χ is well-defined and linear because of the duality between $\sum_{J \subset \{0, ..., K\}} B_J$ and $P^K(\mathbb{R}^N)$, proven in Lemma 4.2 and Corollary 4.4.

Then by Lemma 4.3, for every $f \in \mathscr{C}^{K}(\mathbb{R}^{N})$, every $k \in \{0,..., K\}$, every $q(\partial/\partial x) \in Q^{k}(\mathbb{R}^{N})$, and every $J \subset \{0,..., K\}$ with card J = k + 1, there exists $x \in [x_{j}]_{j \in J}$ such that $q(\partial/\partial x)(\chi(f) - f)(x) = 0$.

Proof of Theorem 3.1. It only remains to generalize the preceding remark to the case where $x_0, ..., x_K$ are not necessarily distinct. For $k \in \{0, ..., K\}$, let $y_k = (x_k, 0, ..., 0, 1, 0, ..., 0) \in \mathbb{R}^{N+K+1}$, where the unit is in the N + k + 1st place. Let $\pi \colon \mathbb{R}^{N+K+1} \to \mathbb{R}^N$ be the projection onto the first Ncoordinates and let $\pi^* \colon \mathscr{C}^K(\mathbb{R}^N) \to \mathscr{C}^K(\mathbb{R}^{N+K+1})$ be given by $\pi^*(f) = f \circ \pi$.

Since $y_0, ..., y_K$ are independent, let $\psi: \mathscr{C}^K(\mathbb{R}^{N+K+1}) \to P^K(\mathbb{R}^{N+K+1})$ be the map whose existence is proven in Remark 4.6 and define $\chi: \mathscr{C}^K(\mathbb{R}^N) \to P^K(\mathbb{R}^N)$

by $\pi^* \circ \chi = \psi \circ \pi^*$. χ is well defined because for $f \in \mathscr{C}^K(\mathbb{R}^N)$, $\pi^*(f) \in \mathscr{C}^K(\mathbb{R}^{N+K+1})$ is independent of the last K + 1 variables. By Proposition 3.7 (in case $K \ge 1$), so is $\psi \circ \pi^*(f)$. That is, $\psi \circ \pi^*(f)$ is a polynomial of degree at most K, in the first N coordinates of \mathbb{R}^{N+K+1} only.

Now choose $f \in \mathscr{C}^{\kappa}(\mathbb{R}^{N})$, $q(\partial/\partial x) \in Q^{k}(\mathbb{R}^{N})$, where $k \in \{0,..., K\}$, and let $J \subset \{0,..., K\}$ with card J = k + 1. By Remark 4.6, let $y \in [y_{j}]_{j \in J}$ such that

$$q\left(\frac{\partial}{\partial x}\right)\pi^*\circ\chi(f)(y) = q\left(\frac{\partial}{\partial x}\right)\psi\circ\pi^*(f)(y)$$
$$= q\left(\frac{\partial}{\partial x}\right)\pi^*(f)(y)$$

Then $q(\partial/\partial x)(\chi(f) - f)(\pi(y)) = 0$ and $\pi(y) \in [x_j]_{j \in J}$ because $\pi(y_j) = x_j$ for $j \in \{0, ..., K\}$.

Remark 4.7. Lemma 4.3 can be generalized to a statement about finite families of functions and differential operators. Let S be a finite indexing set and suppose $\{g_s\}_{s\in S} \subset \mathscr{C}^K(\mathbb{R}^N)$ such that $T(g_s) = 0$ for every $s \in S$ and every $T \in \sum_{J \subset \{0,...,K\}} B_J$. (B_J has been defined only when $x_0, ..., x_K$ are independent.) Then, for every $k \in \{0,...,K\}$, every indexed set $\{q_s\}_{s\in S} \subset Q^k(\mathbb{R}^N)$, and every $J \subset \{0,...,K\}$ with card J = k + 1, there exists $x \in [x_j]_{j\in J}$ such that $\sum_{s\in S} q_s(\partial/\partial x) g_s(x) = 0$.

Therefore, if $\{f_s\}_{s\in S} \subset \mathscr{C}^K(\mathbb{R}^N)$, then there exists $x \in [x_j]_{j\in J}$ such that $\sum_{s\in S} q_s(\partial/\partial x)(\chi(f_s) - f_s)(x) = 0$. The method of the preceding proof of Theorem 3.1 can be used to prove this when $x_0, ..., x_K$ are not necessarily distinct.

As in Proposition 3.7, if $\sum_{s \in S} q_s(\partial/\partial x)(f_s)$ is identically zero, so is $\sum_{s \in S} q_s(\partial/\partial x)(\chi(f_s))$.

Remark 4.8. The proof of Lemma 4.2 shows that, if $x_0, ..., x_K$ are in general position in \mathbb{R}^N (that is, every subset of $\{x_0, ..., x_K\}$ of cardinality N + 1 is independent), then $\chi(f)$ is well defined for $f \in \mathscr{C}^H(\mathbb{R}^N)$, where $H = \min \{K, N - 1\}$. This corresponds to the fact that the Hermite interpolating polynomial $\chi(f)$, at distinct points $x_0, ..., x_K \in \mathbb{R}$, is defined for $f \in \mathscr{C}^0(\mathbb{R})$. In this case χ is, of course, Lagrange interpolation.

Remark 4.9. We will sometimes use the notation $\chi_{x_0...x_K}$ to indicate the dependence of χ on the points of interpolation. For a fixed $f \in \mathscr{C}^{\kappa}(\mathbb{R}^N)$, consider the symmetric mapping from $(\mathbb{R}^N)^{\kappa+1}$ to $P^{\kappa}(\mathbb{R}^N)$ which is given by $x_0, ..., x_K \mapsto \chi_{x_0...x_K}(f)$. The techniques used here can also be used to show that this mapping is continuous.

EXAMPLE 4.10. The conclusion of Theorem 3.1 cannot be strengthened to include non-homogeneous differential operators. For, let K = 1, $x_0 = (0, 0)$, and $x_1 = (1, 0) \in \mathbb{R}^2$. Define $f(x, y) \in \mathscr{C}^1(\mathbb{R}^2)$ by f(x, y) =

PAUL KERGIN

 $(6x^2 - 6x + 1) y - 6x^2 + 6x$. $\chi(f)$ is the zero polynomial. Yet if $q(\partial/\partial x, \partial/\partial y)$ is the non-homogeneous operator $f \mapsto \partial f/\partial y + f$, $q(\partial/\partial x, \partial/\partial y)f(x, 0) = 1$ for all $x \in [0, 1]$.

5.

This section gives versions of χ for interpolating complex analytic functions and differential forms. \mathbb{C}^N is identified with \mathbb{R}^{2N} and a point $(z_1, ..., z_N) \in \mathbb{C}^N$ has real and imaginary components $(x_1, ..., x_N, y_1, ..., y_N)$.

PROPOSITION 5.1. Let $N \in \mathbb{N}^+$, $K \in \mathbb{N}$, $z_0, ..., z_K \in \mathbb{C}^N$, and let χ be the interpolation at $(x_0, y_0), ..., (x_K, y_K) \in \mathbb{R}^{2N}$ given in Theorem 3.1.

For $h: \mathbb{C}^N \to \mathbb{C}$, K times continuously differentiable, let $\chi(h) = \chi(f) + i\chi(g)$, where h = f + ig, real and imaginary parts.

If h is analytic, so is $\chi(h)$, that is, $\chi(h) \in P^{K}(\mathbb{C}^{N})$.

Proof. If K = 0, $\chi(f)$ and $\chi(g)$ are constants, so we may assume $K \in \mathbb{N}^+$. Then by Remark 4.7, since f + ig satisfies the Cauchy-Riemann equations, $\partial f/\partial x_n - \partial g/\partial y_n \equiv 0$ and $\partial f/\partial y_n + \partial g/\partial x_n \equiv 0$ for all $n \in \{1, ..., N\}$, so does $\chi(f) + i\chi(g)$.

Remark 5.2. For a fixed analytic $h: \mathbb{C}^N \to \mathbb{C}$, the mapping from $(\mathbb{C}^N)^{K+1} \to P^K(\mathbb{C})$, which is given by $z_0, ..., z_K \mapsto \chi_{Z_0...Z_K}(h)$ is continuous because its real and imaginary parts are continuous. See Remark 4.9.

Remark 5.3. Consider the case where N = 1 and $w_0, ..., w_K$ are distinct complex numbers. If $h: \mathbb{C} \to \mathbb{C}$ is analytic, $\chi_{w_0...w_K}(h) \in P^K(\mathbb{C})$ and $\chi_{w_0...w_K}(h)(w_k) = h(w_k)$ for $k \in \{0, ..., K\}$. As in the corresponding real case (Lagrange interpolation) these properties uniquely determine $\chi_{w_0...w_K}(h)$.

Remark 5.4. The complex analytic analog of Proposition 3.9 holds. Let χ be the complex analytic interpolation at $z_0, ..., z_K \in \mathbb{C}^N$. If $\lambda \in \mathbb{C}_N$, the dual of \mathbb{C}^N , and $h: \mathbb{C} \to \mathbb{C}$ is analytic, then $\chi(h \circ \lambda) = \psi(h) \circ \lambda$, where $\psi(h)$ is the complex analytic interpolation of h at the points $\lambda(z_0), ..., \lambda(z_K) \in \mathbb{C}$. We omit a proof of this; it is similar to the proof of Proposition 3.9.

Remark 5.5. We define an interpolation of differential forms. Notation is explained in Remark 4.1. Let $N \in \mathbb{N}^+$, $K \in \mathbb{N}$, $x_0, ..., x_K \in \mathbb{R}^N$, and let χ be the interpolation of Theorem 3.1 at $x_0, ..., x_K$. For $n \in \mathbb{N}$, let $\chi: A^{n,K}(\mathbb{R}^N) \to \{\omega \in A^{n,0}(\mathbb{R}^N) \text{ s.t. } \omega \text{ is a polynomial of degree } \leqslant K\}$ be given by

$$\chi\left(\sum_{1\leqslant s_1<\cdots< s_n\leqslant N}f_{s_1\cdots s_n}\lambda_{s_1}\wedge\cdots\wedge\lambda_{s_n}\right)=\sum_{1\leqslant s_1<\cdots< s_n\leqslant N}\chi(f_{s_1\cdots s_n})\,\lambda_{s_1}\wedge\cdots\wedge\lambda_{s_n}.$$

Remark 5.6. If ω is a closed form (d ω is identically zero), then so is

 $\chi(\omega)$, by a proof which uses Remark 4.7 in a manner similar to the proof of Proposition 5.1. However, if $\omega \in A^{n,K}(\mathbb{R}^N)$, then $d\omega \in A^{n+1,K-1}(\mathbb{R}^N)$ so $\chi(d\omega)$ is not defined in general and the statement " $\chi(d\omega) = d\chi(\omega)$ " is false.

6.

An application of χ is given. Consider a sequence $\{{}_{c}T\}_{c\in\mathbb{N}}$ of distributions in $\mathscr{D}^{0}(\mathbb{R}^{N})$, such that card supp ${}_{c}T \leq K + 1$ for all c and $\lim_{c \to \infty} \max_{x \in \text{supp}_{o}T} \{|x|\} = 0$. where $\text{supp}_{c}T$ is the support of ${}_{e}T$. That is, $\{{}_{o}T\}$ is a sequence of linear combinations of $\leq K + 1$ Dirac measures whose supports tend to the origin. Let $E \subset \mathscr{C}^{K}(\mathbb{R}^{N})$ be the solution set of some differential equation $q(\partial/\partial x)(f) \equiv 0$, where q is a homogeneous operator and suppose $\lim_{c \to \infty} \{{}_{o}T(p)\}$ exists for every $p \in E \cap P^{K}(\mathbb{R}^{N})$. Under these hypotheses, the following theorem says that $\lim_{c \to \infty} \{{}_{o}T(f)\}$ exists for every $f \in E$.

THEOREM 6.1. Let $N \in \mathbb{N}^+$ and $K \in \mathbb{N}$. Let $\{{}_{c}T\}_{c \in \mathbb{N}}$ be a sequence of distributions in $\mathscr{D}^{K}(\mathbb{R}^{N})$, each having finite support. For each $c \in \mathbb{N}$, let ${}_{c}J = -1 + card \operatorname{supp}_{c}T$ and let $\operatorname{supp}_{c}T = \{{}_{c}y_{0}, ..., {}_{o}y_{cJ}\} \subset \mathbb{R}^{N}$. For each $c \in \mathbb{N}$ and $j \in \{0, ..., {}_{c}J\}$, let ${}_{o}M_{j}$ be the order of ${}_{c}T$ at ${}_{c}y_{j}$, and suppose that $\sum_{j=0}^{c} ({}_{c}M_{j} + 1) = K + 1$ for all c and $\lim_{c \to \infty} \max_{j \in \{0, ..., {}_{c}J\}} |{}_{c}y_{j}| = 0$. Explicitly for each $c \in \mathbb{N}$, there exists a finite indexed set of real numbers

$$\{{}_{c}a_{jm}\}_{j\in\{0,\ldots,c^{J}\}}m\in\mathbb{N}^{N_{s,t}}\mid m\mid\leqslant {}_{c}M_{j}$$

such that

$${}_{c}T(f) = \sum_{j=0}^{c^{J}} \sum_{\substack{m \in \mathbb{N}^{N} \\ |m| \leq c^{M_{j}}}} c a_{jm} \frac{\partial^{|m|}}{\partial \chi^{m}} f(c y_{j})$$

for all $f \in \mathscr{C}^{K}(\mathbb{R}^{N})$.

Let F be any linear subspace of $\bigoplus_{k=0}^{K} Q^{k}(\mathbb{R}^{N})$ such that, if $q(\partial/\partial x) \in F$, then each homogeneous part of q is also in F, and let

$$E = \left\{ f \in \mathscr{C}^{\mathsf{K}}(\mathbb{R}^{\mathsf{N}}) \text{ s.t. } q\left(\frac{\partial}{\partial x}\right)(f) \equiv 0 \text{ for every } q \in F \right\}$$

Suppose that $\{{}_{c}T(p)\}_{c\in\mathbb{N}}$ converges for every $p \in E \cap P^{K}(\mathbb{R}^{N})$. Then, for each $f \in E$, $\{{}_{c}T(f)\}_{c\in\mathbb{N}}$ converges to $\lim_{c\to\infty} \{{}_{c}T(\chi_{0}(f))\}$ where $\chi_{0}(f)$ is the Taylor polynomial of f up to order K at the origin.

Proof. Since F is generated by its homogeneous elements, $\chi_0(f) \in E$ and $\lim_{a\to\infty} \{{}_{a}T(\chi_0(f))\}$ exists by the hypothesis on $\{{}_{a}T\}$.

For each $c \in \mathbb{N}$, choose ${}_{c}x_{0},...,{}_{c}x_{K} \in \mathbb{R}^{N}$ such that, for each $j \in \{0,...,{}_{c}J\}$, ${}_{c}x_{k} = {}_{c}y_{j}$ for ${}_{c}M_{j} + 1$ values of $k \in \{0,...,K\}$. This is possible because

 $\sum_{j=0}^{c} ({}_{c}M_{j} + 1) = K + 1$. For each $c \in \mathbb{N}$, let ${}_{c}\chi$ be the interpolation of Theorem 3.1 at ${}_{c}x_{0}, ..., {}_{c}x_{K}$.

Given $\epsilon > 0$, it suffices to find $C \in \mathbb{N}$ so large that $|_{c}T(f) - T(\chi_{0}(f))| \leq \epsilon$ for all $c \geq C$, where $T(\chi_{0}(f)) = \lim_{c \to \infty} \{_{c}T(\chi_{0}(f))\}$. Fix L > 0 so large that, for each $c \in \mathbb{N}$ and each $p \in E \cap P^{K}(\mathbb{R}^{N})$ having the absolute value of all coefficients ≤ 1 , $|_{c}T(p)| \leq L$.

By Remark 4.9, the mapping from $(\mathbb{R}^N)^{K+1}$ to $P^K(\mathbb{R}^N)$ given by $y_0, ..., y_K \mapsto \chi_{y_0,...,y_K}(2Lf/\epsilon)$ is continuous. Choose $C \in \mathbb{N}$ so large that, for each $c \ge C$, $(c\chi - \chi_0)(2Lf/\epsilon)$ has the absolute value of each of its coefficients $\leqslant 1$, and also, for $c \ge C$, $|_c T(\chi_0(f)) - T(\chi_0(f))| \le \epsilon/2$.

For all c, ${}_{c}T(f) = {}_{c}T({}_{c}\chi(f))$ because $f - {}_{c}\chi(f)$ is flat of order ${}_{c}M_{j}$ at ${}_{c}y_{j}$ for $j \in \{0, ..., {}_{c}J\}$ (Remark 3.4). Therefore, for $c \ge C$,

$$| {}_{c}T(f) - T(\chi_{0}(f))| \leq | {}_{c}T({}_{c}\chi - \chi_{0})(f)|$$
$$+ | {}_{c}T(\chi_{0}(f)) - T(\chi_{0}(f))|$$
$$\leq \frac{\epsilon}{2} + \frac{\epsilon}{2}$$

because $({}_{e\chi} - \chi_0)(2Lf/\epsilon)$ has the absolute value of each coefficient ≤ 1 and also belongs to *E*, by Proposition 3.7, so

$$\left| {}_{c}T(c\chi - \chi_{0})\left(\frac{2Lf}{\epsilon}\right) \right| \leq L$$

from the definition of L.

Remark 6.2. The special case of the preceeding theorem for $F = \{0\}$, $E = \mathscr{C}^{K}(\mathbb{R}^{N})$ was essentially given by Glaeser in [4]. Bloom [1] gives the complex analytic version, which may also be proven using Proposition 5.1. $\chi(f)$ is the same as the interpolation used there whenever $f \in P^{K+1}(\mathbb{C}^{N})$. In that case, the method used in [1] to interpolate f coincides with the method given here in the next section.

7.

Proposition 7.3 can be used to find $\chi(f)$ without evaluating integrals, whenever f is a polynomial.

Remark 7.1. Let $W_0, ..., W_K$ be indeterminates. For $M \in \mathbb{N}$, there exist unique polynomials.

$$\sigma_0(W_0, ..., W_K), ..., \sigma_K(W_0, ..., W_K) \in \mathbb{R}[W_0, ..., W_K],$$

the ring of polynomials with real coefficients in K + 1 indeterminants, such that

$$W_k^M = \sum_{l=0}^K \sigma_l(W_0, ..., W_k) \cdot W_k^l \quad \text{for } k \in \{0, ..., K\}.$$
(7.2)

For uniqueness, if $\tau_0, ..., \tau_K$ is another such family of polynomials, then by Cramer's rule,

$$(\sigma_{l} - \tau_{l})(W_{0}, ..., W_{K}) \begin{vmatrix} 1 & W_{0} & \cdots & W_{0}^{K} \\ \vdots & \vdots & & \vdots \\ 1 & W_{K} & \cdots & W_{K}^{K} \end{vmatrix} = 0$$

for $l \in \{0,..., K\}$ and the van der Monde determinant is not zero. For existence, if $M \in \{0,..., K\}$, $\sigma_M = 1$ and $\sigma_l = 0$ if $l \neq M$. If existence is proven up to $M \geq K$, then the formula

$$W_{k}^{M+1} = \sum_{l=0}^{K} \tau_{l}(W_{0}, ..., W_{K}) \cdot W_{k}^{M-l} \quad \text{for } k \in \{0, ..., K\}$$

gives an inductive step, where $-\tau_l$ is the elementary symmetric polynomial of degree l+1.

If real numbers are substituted for $W_0, ..., W_K$, then $\sigma_l(x_0, ..., x_K)$ is the coefficient of x^l in the Hermite interpolating polynomial at $x_0, ..., x_K$ for the function $f \in \mathscr{C}^K(\mathbb{R})$ given by $f(x) = x^M$.

PROPOSITION 7.3. Let $N \in \mathbb{N}^+$, $K \in \mathbb{N}$, and $x_0, ..., x_K \in \mathbb{R}^N$. Also, let $M \in \mathbb{N}$ and define $\sigma_0, ..., \sigma_K \in \mathbb{R}[W_0, ..., W_K]$ by (7.2). Then, for each $m \in \mathbb{N}^N$ with |m| = M,

$$\chi_{x_0,\ldots,x_K}\left(\frac{M!}{m!}x^m\right) = \sum_{\substack{k \in \mathbb{N}^N \\ M-K \leqslant |k| \\ k \leqslant m}} \frac{|m-k|!}{(m-k)!} \alpha_k x^{m-k},$$

where α_k is the coefficient of V^k in

$$\sigma_{M-|k|}(x_{01}V_1 + \cdots + x_{0N}V_N, \dots, x_{K1}V_1 + \cdots + x_{KN}V_N).$$

 $(V_1,...,V_N \text{ are indeterminates}, V^k = V_1^{k_1} \cdot \cdots \cdot V_N^{k_N}$ and the components of x_k are $(x_{k_1},...,x_{k_N})$ for $k \in \{0,...,K\}$. $\chi_{x_0,...,x_K}$ is interpolation at $x_0,...,x_K$.)

Proof. Let $p: \mathbb{R} \to \mathbb{R}$ be given by $p(w) = w^M$, so for every $(\lambda_1, ..., \lambda_N) = \lambda \in \mathbb{R}_N$ and every $(y_1, ..., y_N) = y \in \mathbb{R}^N$, $p \circ \lambda(y) = \sum_{m \in \mathbb{N}^N |m| \leq M} (M!/m!) y^m \lambda^m$.

By Proposition 3.9,

$$\chi_{x_0\cdots x_K}(p\circ\lambda)(y) = \chi_{\lambda(x_0)\cdots\lambda(x_K)}(p)(\lambda(y))$$

$$= \sum_{l=0}^{K} \sigma_l(x_{01}\lambda_1 + \cdots + x_{0N}\lambda_N, \dots, x_{K1}\lambda_1 + \cdots + x_{NN}\lambda_N)(y_1\lambda_1 + \cdots + y_N\lambda_N)^l.$$
(7.4)

Here, $\chi_{\lambda(x_0)...\lambda(x_K)}$ is interpolation in \mathbb{R}^1 at $\lambda(x_0),...,\lambda(x_K)$. For any fixed $m \in \mathbb{N}^N$ with |m| = M and each $k \in \mathbb{N}^N$ such that $M - K \leq |k|$ and $k \leq m$, the coefficient of y^{m-k} in the right-hand side of (7.4) is

$$\sigma_{M-|k|}(x_{01}\lambda_1 + \dots + x_{0N}\lambda_N, \dots, x_{K1}\lambda_1 + \dots + x_{KN}\lambda_N) \cdot \frac{|m-k|!}{(m-k)!} \lambda^{m-k}$$
$$= \sum_{\substack{j \in \mathbb{N}^N \\ |j|=|k|}} \alpha_j \frac{|m-k|!}{(m-k)!} \lambda^{m-k+j}.$$

because $\sigma_{M-|k|}$ is homogeneous of degree |k|. Hence the right-hand side of (7.4) is

$$\sum_{\substack{k \in \mathbb{N}^N \\ M-K_{\leqslant}|k| \\ k \leqslant m}} \left(\sum_{\substack{j \in \mathbb{N}^N \\ |j|=|k|}} \alpha_j \frac{|m-k|!}{(m-k)!} \lambda^{m-k+j} \right) y^{m-k}.$$
(7.5)

Now, let $S = \binom{M+N-1}{M}$ and choose $\lambda_1, ..., \lambda_s \in \mathbb{R}_N$ and $a_1, ..., a_s \in \mathbb{R}$ such that $\sum_{s=1}^{S} a_s p \circ \lambda_s(y) = (M!/m!) y^m$ for every $y \in \mathbb{R}^N$. That is, for $j \in \mathbb{N}^N$ with |j| = M, $\sum_{s=1}^{S} a_s \lambda_s^j = 1$ if j = m and equals zero otherwise. Then by linearity of $\chi_{x_0...x_K}$ and applying (7.5),

$$\chi_{x_0\cdots x_K}\left(\frac{M!}{m!} x^m\right)(y) = \sum_{\substack{k\in\mathbb{N}^N\\M-K\leqslant |k|\\k\leqslant m}} \alpha_k \frac{|m-k|!}{(m-k)!} y^{m-k}$$

for every $y \in \mathbb{R}^N$.

Remark 7.6. The complex version of Proposition 7.3 can be stated and proven by writing \mathbb{C} rather than \mathbb{R} and referring to Remark 5.4 rather than Proposition 3.9.

ACKNOWLEDGMENTS

The contents of this paper appear in my thesis at the University of Toronto. I am grateful for the encouragement of my supervisor, Thomas Bloom, who conjectured Theorem 6.1. I also had many helpful discussions with Ed Bierstone and Pierre Milman.

References

- 1. T. BLOOM, On the Zariski tangent space to a complex analytic variety, *Math. Ann.* 214 (1975), 159–166.
- 2. C. DE BOOR, Polynomial interpolation, Proc., Int. Cong. Helsinki (1978), in press.
- 3. H. FLANDERS, "Differential Forms," Academic Press, New York, 1963.
- G. GLAESER, L'interpolation des fonctions différentiables de plusieurs variables, Proc. Liverpool Singularities—Symposium II, Lecture Notes in Mathematics No. 209, Springer-Verlag, Berlin/Heidelberg/New York, 1971.
- 5. P. KERGIN, "Interpolation of CK Functions," Thesis, University of Toronto, 1978.
- C. MICCHELLI AND P. MILMAN, A formula for Kergin interpolation in R^k, J. Approximation Theory 29 (1980), 294–296.
- F. TREVES, "Topological Vector Spaces, Distributions, and Kernels," Academic Press, New York, 1967.
- 8. B. WENDROFF, "Theoretical Numerical Analysis," Academic Press, New York, 1966.
- 9. M. ABRAMOWITZ AND A. STEGUN, "Handbook of Mathematical Functions," Dover, New York, 1965.