A Natural Interpolation of C^{K} Functions

Paul Kergin*
Department of Mathematics, University of Toronto, Toronto, Canada
Communicated by Carl de Boor

Received December 28, 1978
DEDICATED TO THE MEMORY OF P. TURÁN

1. Introduction

This paper gives a linear projection χ from the space of K times continuously differentiable functions on \mathbb{R}^{N} onto the space of polynomials of degree $\leqslant K$ on \mathbb{R}^{N}. The projection depends only on $K+1$ fixed points $x_{0}, \ldots, x_{K} \in \mathbb{R}^{N}$.

When $N=1, \chi(f)$ is the Hermite interpolating polynomial of f at $x_{0}, \ldots, x_{K} \in \mathbb{R}$, i.e., the polynomial p of degree $\leqslant K$ for which $f-p$ vanishes at x_{0}, \ldots, x_{K}, with repetitions in the x_{i} giving rise to a multiple zero of $f-p$ in the usual way. One method of computing p is solving a system of $K+1$ linear equations in $K+1$ unknowns. The unknowns are the coefficients of p and the equations are $p\left(x_{k}\right)=f\left(x_{k}\right)(k=0, \ldots, K)$ if x_{0}, \ldots, x_{K} are distinct.

A straightforward generalization of the Hermite interpolation problem to $\mathbb{R}^{N}(N \geqslant 2)$ can be stated: if x_{0}, \ldots, x_{K} are points in \mathbb{R}^{N} and $f: \mathbb{R}^{N} \rightarrow \mathbb{R}$, find a polynomial $p: \mathbb{R}^{N} \rightarrow \mathbb{R}$, of degree $\leqslant K$, such that $(p-f)\left(x_{k}\right)=0$ for all k. Again, when x_{0}, \ldots, x_{K} are distinct, p can be found by solving a system of $K+1$ linear equations, but now there are (${ }_{K}^{K+N}$) unknowns, and p is no longer uniquely determined if $K \geqslant 1$.

Additional conditions must be imposed on p to ensure that it is unique. Glaeser, in his "schemes of interpolation" given in [4], requires that p lie in a $K+1$-dimensional subspace of the space of polynomials of degree $\leqslant K$. The choice of subspace is arbitrary among those subspaces of dimension $K+1$ which contain a solution of the linear system $p\left(x_{k}\right)=f\left(x_{k}\right)$ $(k=0, \ldots, K)$ for all f. The only information needed to find p is the values of f at x_{0}, \ldots, x_{K}.

Here, we impose the conditions: p must depend linearly on f and, if $q(\partial / \partial x)$ is a constant coefficient differential operator having terms all of the same order $k \in\{0, \ldots, K\}$, then $q(\partial / \partial x)(p-f)$ must equal zero at some point in the con-

[^0]vex hull of any $k+1$ of the points x_{0}, \ldots, x_{K}. Thus, if f is a solution of the equation $q(\partial / \partial x)(f) \equiv 0$, so is p.

The proof of the existence of $\chi: f \mapsto p$ given here is an application of Stokes' theorem. For example, let $K=1$ and $x_{0}=(0,0), x_{1}=(1,0) \in \mathbb{R}^{2}$. If f is continuously differentiable, we require that $p\left(x_{0}\right)=f\left(x_{0}\right), p\left(x_{1}\right)=$ $f\left(x_{1}\right)$, and $\int_{0}^{1}(\partial p / \partial y)(x, 0) d x=\int_{0}^{1}(\partial f / \partial y)(x, 0) d x$. Let $q(\partial / \partial x, \partial / \partial y)=$ $a(\partial / \partial x)+b(\partial / \partial y)$, where $a, b \in \mathbb{R}$. Then

$$
\begin{aligned}
& \int_{0}^{1} q\left(\frac{\partial}{\partial x}, \frac{\partial}{\partial y}\right)(p-f)(x, 0) d x \\
& \quad=a((p-f)(1,0)-(p-f)(0,0)) \\
& \quad+b \int_{0}^{1} \frac{\partial}{\partial y}(p-f)(x, 0) d x
\end{aligned}
$$

by the mean value theorem, and this equals zero. Therefore, there exists $x \in[0,1]$ such that $q(\partial / \partial x, \partial / \partial y)(p-f)(x, 0)=0$.

Micchelli and Milman [6] give a proof of the existence of χ by exhibiting an explicit expression for $\chi(f)$, analogous to Newton's form of Hermite interpolation.
Sections 3 and 4 prove the uniqueness, existence, and some properties of χ. Section 5 gives versions of χ for complex analytic functions and real differential forms. Section 6 is an application to a problem of convergence of distributions and Section 7 contains a formula not involving integrals for calculating $\chi(f)$ when f is a polynomial.

2.

We use the following notation: $\mathbb{N}=\{0,1,2, \ldots\}$ and $\mathbb{N}^{+}=\{1,2, \ldots\}$. If $N \in \mathbb{N}^{+}, \mathbb{R}_{N}$ and \mathbb{C}_{N} represent the algebraic duals of \mathbb{R}^{N} and \mathbb{C}^{N}. The dimension of a finite-dimensional vector space E over \mathbb{R} is written $\operatorname{dim} E$.

If J is a finite set, card J is the number of elements in J. An indexed subset of $\mathbb{R} \mathbb{R}^{N},\left\{x_{j}\right\}_{j_{E J}}$, has convex hull $\left[x_{j}\right]_{j e J}$.

For a polynomial $p: \mathbb{R}^{N} \rightarrow \mathbb{R}$ or $p: \mathbb{C}^{N} \rightarrow \mathbb{C}, \operatorname{deg} p$ is its degree. If $K \in \mathbb{N}$, $P^{K}\left(\mathbb{R}^{N}\right)$ and $P^{K}\left(\mathbb{C}^{N}\right)$ are the Hausdorff vector spaces of real and complex polynomials of degree $\leqslant K$.

A multi-index is an element of \mathbb{N}^{N}. If

$$
j=\left(j_{1}, \cdots, j_{N}\right) \in \mathbb{N}^{N}, \quad|j|=j_{1}+\cdots+j_{N} \quad \text { and } \quad j!=j_{1}!\cdots j_{N}!
$$

If also $i \in \mathbb{N}^{N}$, then $i \leqslant j$ whenever $i_{n} \leqslant j_{n}$ for all n. In this case, $\binom{i}{i}=$ $j!/ i!(j-i)!$. If $x \in \mathbb{R}^{N}$ or \mathbb{C}^{N}, then $x^{j}=x_{1}^{j_{1}} \cdots x_{N}^{j_{N}}$. $\left.\right|^{|j|} / \partial x^{j}$ is the differential operator on $\mathbb{R}^{N}, \partial^{|j|} /\left(\partial x_{1}^{j_{1}} \cdots \partial x_{N}^{j_{N}}\right)$. $Q^{K}\left(\mathbb{R}^{N}\right)$ is the real vector space of con-
stant coefficient differential operators which are homogeneous of order K. That is, an element q of $Q^{K}\left(\mathbb{R}^{N}\right)$ is a linear combination of operators $\partial^{j l} / \partial x^{j}$ such that $|j|=K$.
$\mathscr{C} K\left(\mathbb{R}^{N}\right)$ is the vector space of K-times continuously differentiable functions $f: \mathbb{R}^{N} \rightarrow \mathbb{R}$. It has the topology of uniform convergence of derivatives of order $\leqslant K$ on compact sets, given by the family of seminorms

$$
f \mapsto \max _{||k| \leq K}^{\mid k \in X}\left|,\left|\frac{\partial|k|}{\partial x^{k}} f(x)\right|,\right.
$$

where X ranges over all compact subsets of $\mathbb{R}^{N} . \mathscr{D}^{K}\left(\mathbb{R}^{N}\right)$ is the vector space of continuous linear functionals on $\mathscr{C} K\left(\mathbb{R}^{N}\right)$.

3.

This section proves uniqueness of the map χ of the following theorem. Existence is proven in Section 4.

Theorem 3.1. Let $N \in \mathbb{N}^{+}, K \in \mathbb{N}$, and $x_{0}, \ldots, x_{K} \in \mathbb{R}^{N}$, not necessarily distinct. There is a unique $\chi: \mathscr{C}^{K}\left(\mathbb{R}^{N}\right) \rightarrow P^{K}\left(\mathbb{R}^{N}\right)$ satisfying:
(3.2) x is linear.
(3.3) for every $f \in \mathscr{C}^{K}\left(\mathbb{R}^{N}\right)$, every $q \in Q^{k}\left(\mathbb{R}^{N}\right)$, where $k \in\{0, \ldots, K\}$, and every $J \subset\{0, \ldots, K\}$ with card $J=k+1$, there exists $x \in\left[x_{j}\right]_{j \in J}$ such that $q(\partial / \partial x)(\chi(f)-f)(x)=0$.

Remark 3.4. Let y be one of the points x_{0}, \ldots, x_{K}, let $J=\{j \in\{0, \ldots, K\}$ s.t. $\left.x_{j}=y\right\}$, and let $m \in\{0, \ldots$, card $J-1\}$. Property (3.3) implies, for every $f \in \mathscr{C}^{K}\left(\mathbb{R}^{N}\right)$ and $i \in \mathbb{N}^{N}$ with $|i|=m$, that there exists $x \in\left[x_{j}\right]_{j \in J}$ such that $\left(\partial^{|i|} / \partial x^{i}\right)(\chi(f)-f)(x)=0$. That is, $\chi(f)-f$ is flat of order card $J-1$ at y : If $N=1$, this is precisely the property that characterizes the Hermite interpolating polynomial of f because $\operatorname{deg} \chi(f) \leqslant K$. See Wendroff [8, Chapter 1].

For all $N, \chi(f)$ is indeed an interpolation of f at x_{0}, \ldots, x_{K} because $(\chi(f)-f)\left(x_{j}\right)=0$ for all j.

Proposition 3.5. If $\chi: \mathscr{C}^{K}\left(\mathbb{R}^{N}\right) \rightarrow P^{K}\left(\mathbb{R}^{N}\right)$ satisfies (3.2) and (3.3), it is continuous.

Proof. Choose $\delta>0$ so small that, if $p \in P^{K}\left(\mathbb{R}^{N}\right)$ satisfies the property that, for every $i \in \mathbb{N}^{N}$ with $|i| \leqslant K$, there exists $x \in\left[x_{j}\right]_{j \in\{0, \ldots, K\}}$ (depending. on $i\}$ such that $\left|\left(\partial|i| / \partial x^{i}\right) p(x)\right| \leqslant \delta$, then p also satisfies the property that
each of its coefficients is in absolute value $\leqslant 1$. By (3.3) applied to the differential operators $\partial^{|i|} / \partial x^{i}$, if $f \in \mathscr{C}^{K}\left(\mathbb{R}^{N}\right)$ such that

$$
\max _{\substack{i \in \mathbb{N} N \\ x \in[x,|i| \leq K \\ j \in\{0, \ldots, K\}}}\left\{\left|\frac{\partial \mid i]}{\partial x^{i}} f(x)\right|\right\} \leqslant \delta
$$

then the absolute value of each coefficient of $\chi(f)$ is $\leqslant 1$.
Remark 3.6. The next proposition shows that if a function f in $\mathscr{C}^{K}\left(\mathbb{R}^{N}\right)$ is a solution of the differential equation $q(\partial / \partial x) f(x) \equiv 0$, where q is a homogeneous constant coefficient operator, then $\chi(f)$ is also a solution. In particular, if f is zero along a constant vector field, so is $\chi(f)$.

Proposition 3.7. Let $K \in \mathbb{N}$ and suppose $\chi: \mathscr{C}^{K}\left(\mathbb{R}^{N}\right) \rightarrow P^{K}\left(\mathbb{R}^{N}\right)$ satisfies (3.3). Let $q \in Q^{k}\left(\mathbb{R}^{N}\right)$, where $k \in\{0, \ldots, K\}$ and $f \in \mathscr{C} K\left(\mathbb{R}^{N}\right)$ such that $q(\partial \mid \partial x)(f)$ is identically zero. Then $q(\partial / \partial x)(\chi(f))$ is identically zero.

Proof. Let $\chi(f)=p_{0}+\cdots+p_{K}$ be the homogeneous decomposition of $\chi(f)$. It suffices to show for each $l \in\{k, \ldots, K\}$, that $q(\partial / \partial x)\left(p_{l}\right)$ is identically zero. We use decreasing induction. Fix $L \in\{k, \ldots, K\}$ and make the inductive hypothesis that $q(\partial / \partial x)\left(p_{l}\right)$ is identically zero for $l>L$. The hypothesis is trivial if $L=K$.

By property (3.3), for each $i \in \mathbb{N}^{N}$ with $|i|=L-k$, there exists $x \in \mathbb{R}^{N}$ such that

$$
\frac{\partial^{|i|}}{\partial x^{i}} \cdot q\left(\frac{\partial}{\partial x}\right) \chi(f)(x)=\frac{\partial^{|i|}}{\partial x^{i}} \cdot q\left(\frac{\partial}{\partial x}\right) f(x)=0
$$

Therefore,

$$
\frac{\partial^{|i|}}{\partial x^{i}} \cdot q\left(\frac{\partial}{\partial x}\right) p_{L}(x)=\frac{\partial^{|i|}}{\partial x^{i}} \cdot q\left(\frac{\partial}{\partial x}\right)\left(p_{0}+\cdots+p_{K}\right)(x)=0
$$

because for $l<L$, $\operatorname{deg} p_{l}<$ the order of $\left(\partial^{i i} / \partial x^{i}\right) \cdot q(\partial / \partial x)$ and by the inductive hypothesis for $l>L$.

But $q(\partial / \partial x)\left(p_{L}\right)$ is homogeneous of degree $L-k$ and each of its derivatives of order $L-k$ is zero at some point in \mathbb{R}^{N}, so it is identically zero.

Remark 3.8. Proposition 3.9 shows, if $f \in \mathscr{C}\left(\mathbb{R}^{N}\right)$ is constant on each hyperplane in \mathbb{R}^{N} which is parallel to some fixed hyperplane, then $\chi(f)$ is also constant on each of the hyperplanes.

Proposition 3.9. Let $K \in \mathbb{N}$ and suppose $\chi: \mathscr{C}^{K}\left(\mathbb{R}^{N}\right) \rightarrow P^{K}\left(\mathbb{R}^{N}\right)$ satisfies (3.2) and (3.3). Let $\lambda \in \mathbb{R}_{N}$ be a linear functional on \mathbb{R}^{N} and let $f \in \mathscr{C}^{K}(\mathbb{R})$. Then $\chi(f \circ \lambda)=\psi(f) \circ \lambda$, where $\psi(f)$ is the Hermite interpolating polyw nomial of f at $\lambda\left(x_{0}\right), \ldots, \lambda\left(x_{K}\right)$.

Proof. We may assume $\lambda \neq 0$.
Let $g: \mathbb{R} \rightarrow \mathbb{R}$ be given by $(g \circ \lambda)(x)=\chi(f \circ \lambda)(x)$. To show g is welldefined, fix w and $x \in \mathbb{R}^{N}$ such that $\lambda(w)=\lambda(x)$. Let $q(\partial / \partial x)=\sum_{n=1}^{N} v_{n} \times$ $\partial / \partial x_{n} \in Q^{1}\left(\mathbb{R}^{N}\right)$, where v_{n} is the nth component of $w-x$. Since $q(\partial / \partial x)(\lambda)$ is identically zero on \mathbb{R}^{N}, so is $q(\partial / \partial x)(f \circ \lambda)$ if $K \in \mathbb{N}^{+}$. Therefore $q(\partial / \partial x)(\chi(f \circ \lambda))$ is identically zero, by Proposition 3.7 if $K \in \mathbb{N}^{+}$and because $\operatorname{deg} \chi(f \circ \lambda)=0$ if $K=0$. In particular, $\chi(f \circ \lambda)$ is constant on the line segment joining x to w.

Now $g \in P^{K}(\mathbb{R})$. For, choose any linear $\gamma: \mathbb{R} \rightarrow \mathbb{R}^{N}$ such that $\lambda \circ \gamma$ is the identity on \mathbb{R}. Then $g=\chi(f \circ \lambda) \circ \gamma$.

Let $y \in \mathbb{R}$ be any one of the points $\lambda\left(x_{0}\right), \ldots, \lambda\left(x_{K}\right)$, let $J=\{j \in\{0, \ldots, K\}$ s.t. $\left.\lambda\left(x_{j}\right)=y\right\}$, and let $k=\operatorname{card} J-1$. By Remark 3.4 , it only remains to show that $g-f$ is flat of order k at y.

Fix $m \in\{0, \ldots, k\}$ and choose $n \in\{1, \ldots, N\}$ such that $\left(\partial / \partial x_{n}\right) \lambda \neq 0$. By property (3.3), there exists $x \in\left[x_{j}\right]_{j \in J}$ such that $\left(\partial^{m} / \partial x_{n}{ }^{m}\right)(\chi(f \circ \lambda)-$ $(f \circ \lambda))(x)=0$. Since $g \circ \lambda=\chi(f \circ \lambda),\left(\partial^{m} / \partial x_{n}^{m}\right)((g-f) \circ \lambda)(x)=0$. Applying the chain rule, $\left(d^{m} / d y^{m}\right)(g-f)(\lambda(x)) \cdot\left(\partial \lambda / \partial x_{n}\right)^{m}=0$. But $x \in\left[x_{j}\right]_{j \in J}$ and $\lambda\left(x_{j}\right)=y$ for all $j \in J$, so $\lambda(x)=y$ and $\left(d^{m} / d y^{m}\right)(g-f)(y)=0$.

Corollary 3.10. χ is unique.
Proof. Since the polynomials are a dense linear subspace of $\mathscr{C} \mathscr{Q}^{K}\left(\mathbb{R}^{N}\right)$ (see Treves [7, p. 160]) and χ is continuous (Proposition 3.5) it suffices to show that the restriction of χ to the space of polynomials in \mathbb{R}^{N} is unique. But every polynomial in \mathbb{R}^{N} can be written as a sum of polynomials of the form $p \circ \lambda$, where $\lambda \in \mathbb{R}_{N}^{\prime}$ and p is a polynomial in \mathbb{R}. By Proposition 3.9, $\chi(p \circ \lambda)=\psi(p) \circ \lambda$ and the corollary follows by linearity of χ.

4.

The existence of χ is proven here by defining a certain subspace of $\mathscr{D}^{K}\left(\mathbb{R}^{N}\right)$, showing that the dimension of this subspace is $\binom{K+N}{K}=\operatorname{dim} P^{K}\left(\mathbb{R}^{N}\right)$, and requiring, for each of its elements T and each $f \in \mathscr{C}^{K}\left(\mathbb{R}^{N}\right)$, that $T(\chi(f)-f)=0$.

Remark 4.1. The following notation for differential forms is used in this section and Section 5. For $N \in \mathbb{N}^{+}$and $k, m \in \mathbb{N}$, let $A^{k, m}\left(\mathbb{R}^{N}\right)$ be the vector space of differential k forms on \mathbb{R}^{N} which are m times continuously differentiable. An element ω of $A^{k, m}\left(\mathbb{R}^{N}\right)$ will be written

$$
\omega=\sum_{1 \leqslant s_{1}<\cdots<s_{k} \leqslant N} f_{s_{1} \cdots s_{k}} \lambda_{s_{1}} \wedge \cdots \wedge \lambda_{s_{k}}
$$

where $\lambda_{1}, \ldots, \lambda_{N}$ is a basis of \mathbb{R}_{N} and $f_{s_{1} \ldots s_{k}} \in \mathscr{C}^{m}\left(\mathbb{R}^{N}\right)$. For $m \in \mathbb{N}^{+}$,
$d: A^{k, m}\left(\mathbb{R}^{N}\right) \rightarrow A^{k+1, m-1}\left(\mathbb{R}^{N}\right)$ is the exterior derivative, given by

$$
d \omega=\sum_{1 \leqslant s_{1}<\cdots<s_{k} \leqslant N} \sum_{n=1}^{N} \frac{\partial}{\partial y_{n}} f_{s_{1} \cdots s_{k}} \lambda_{n} \wedge \lambda_{s_{1}} \wedge \cdots \wedge \lambda_{s_{k}},
$$

where $y_{1}, \ldots, y_{N} \in \mathbb{R}^{N}$ is the dual basis of $\lambda_{1}, \ldots, \lambda_{N}$, and $\partial / \partial y_{n}=\sum_{l=1}^{N} y_{n l} \times$ $\left(\partial / \partial x_{i}\right) \in Q^{1}\left(\mathbb{R}^{N}\right), y_{n l}$ being the l th component of y_{n}.
Similarly, let $G^{k}\left(\mathbb{R}^{N}\right)$ denote the vector space, $Q^{k}\left(\mathbb{R}^{N}\right) \otimes$ the k th exterior product of \mathbb{R}_{N}. An element μ of $G^{k}\left(\mathbb{R}^{N}\right)$ will be written

$$
\mu=\sum_{1 \leqslant s_{1}<\cdots<s_{k} \leqslant N} q_{s_{1} \cdots s_{k}}\left(\frac{\partial}{\partial x}\right) \lambda_{s_{1}} \wedge \cdots \wedge \lambda_{s_{k}},
$$

where $q_{s_{1} \ldots s_{k}} \in Q^{k}\left(\mathbb{R}^{N}\right)$. Define $\delta: G^{k}\left(\mathbb{R}^{N}\right) \rightarrow G^{k+1}\left(\mathbb{R}^{N}\right)$ by

$$
\delta(\mu)=\sum_{1 \leqslant s_{1}<\cdots<s_{k} \leqslant N} \sum_{n=1}^{N} \frac{\partial}{\partial y_{n}} \cdot q_{s_{1} \cdots s_{k}}\left(\frac{\partial}{\partial x}\right) \lambda_{n} \wedge \lambda_{s_{1}} \wedge \cdots \wedge \lambda_{s_{s^{\prime}}}
$$

Lemma 4.2. Let $N \in \mathbb{N}^{+}, K \in \mathbb{N}$, and $x_{0}, \ldots, x_{K} \in \mathbb{R}^{N}$ independent (that is, if $a_{k} \in \mathbb{R}$ for $k \in\{0, \ldots, K\}$ with $\sum_{k=0}^{K} a_{k}=0$ and $\sum_{k=0}^{K} a_{k} x_{k}=0$, then $a_{k}=0$ for all k).

For each $k \in\{0, \ldots, K\}$, let

$$
\phi_{k}: G^{k}\left(\mathbb{R}^{N}\right) \times \mathscr{C}^{K}\left(\mathbb{R}^{N}\right) \rightarrow A^{k, K-k}\left(\mathbb{R}^{N}\right)
$$

be the bilinear map given by

$$
\begin{aligned}
\phi_{k} & \left(\sum_{1 \leqslant s_{1}<\cdots<s_{k} \leqslant N} q_{s_{1} \cdots s_{k}}\left(\frac{\partial}{\partial x}\right) \lambda_{s_{1}} \wedge \cdots \wedge \lambda_{s_{k}}, f\right) \\
& =\sum_{1 \leqslant s_{1}<\cdots<s_{k_{k} \leqslant N}} q_{s_{1} \cdots s_{k}}\left(\frac{\partial}{\partial x}\right)(f) \lambda_{s_{1}} \wedge \cdots \wedge \lambda_{s_{k}} .
\end{aligned}
$$

(ϕ_{k} is independent of the choice of basis $\lambda_{1}, \ldots, \lambda_{N}$ of \mathbb{R}_{N}.)
For $J \subset\{0, \ldots, K\}$ with card $J=k+1$, let $B_{J}=\left\{T \in \mathscr{D}^{K}\left(\mathbb{R}^{N}\right)\right.$ s.t. there exists $\mu \in G^{k}\left(\mathbb{R}^{N}\right)$ such that $T(f)=\int_{\left[x_{j},\right]_{j \in J}} \phi_{k}(\mu, f)$ for every $\left.f \in \mathscr{C}^{K}\left(\mathbb{R}^{N}\right)\right\}$. Also, let $B_{\phi}=\{0\} \subset \mathscr{D}^{K}\left(\mathbb{R}^{N}\right)$.

Then $\operatorname{dim} \sum_{J c t 0, \ldots, K\}} B_{J} \leqslant\binom{ K_{K}^{+N}}{K}$.
(Equality is proven in Corollary 4.5.)
Proof. We show first, for each non-empty $J \subset\{0, \ldots, K\}$, that

$$
\operatorname{dim}\left(B_{J} / B_{J} \cap \sum_{\substack{I J J J \\ \text { card }=k}} B_{I}\right) \leqslant\binom{ N-1}{k},
$$

where $k+1=$ card J. If $k=0, B_{J}$ is the one-dimensional subspace of $\mathscr{D}^{K}\left(\mathbb{R}^{N}\right)$ generated by the Dirac measure at some x_{j}, so suppose that $k \in\{1, \ldots, K\}$.

Choose an orientation for $\left[x_{j}\right]_{j \in J}$ and for every $I \subset J$ with card $I=k$, give $\left[x_{i}\right]_{i \in I}$ the orientation induced by that of $\left[x_{j}\right]_{j \in J}$. Let $\psi: G^{k}\left(\mathbb{R}^{N}\right) \rightarrow B_{J}$ be given by

$$
\psi(\mu)(f)=\int_{\left[x_{j}\right]_{j \in J}} \phi_{k}(\mu, f)
$$

for $f \in \mathscr{C} K\left(\mathbb{R}^{N}\right) . \psi$ is linear and onto by the definition of B_{J}.
Let $C \subset \mathbb{R}^{N}$ be the subspace generated by $\left\{x_{j}-x_{i}\right.$ s.t. $\left.i, j \in J\right\}$ so that $\operatorname{dim} C=k$, by the independence of $\left\{x_{j}\right\}_{j \in J}$. Fix y_{1}, \ldots, y_{k}, a basis of C, complete it to a basis $y_{1}, \ldots, y_{k}, y_{k+1}, \ldots, y_{N}$ of \mathbb{R}^{N}, and let $\lambda_{1}, \ldots, \lambda_{N}$ be the dual basis. Also let

$$
\begin{aligned}
E= & \left\{\sum_{1 \leqslant s_{1}<\cdots<s_{k} \leqslant N} q_{s_{1} \cdots s_{k}}\left(\frac{\partial}{\partial x}\right) \lambda_{s_{1}} \wedge \cdots \wedge \lambda_{s_{k} \in G^{k}\left(\mathbb{R}^{N}\right) \text { s.t. }}\right. \\
& q_{12 \cdots k}\left(\frac{\partial}{\partial x}\right) \text { is of the form } \frac{\partial}{\partial y_{1}} \cdot r_{1}\left(\frac{\partial}{\partial x}\right)+\cdots+\frac{\partial}{\partial y_{k}} \cdot r_{k}\left(\frac{\partial}{\partial x}\right) \\
& \text { where } \left.r_{1}, \ldots, r_{k} \in Q^{k-1}\left(\mathbb{R}^{N}\right)\right\} .
\end{aligned}
$$

We will show for each $\mu \in E$, that

$$
\psi(\mu) \in \sum_{\substack{I \subset J \\ \operatorname{card} J=k}} B_{I}
$$

For, fix $r_{1}, \ldots, r_{k} \in Q^{k-1}\left(\mathbb{R}^{N}\right)$ such that $q_{12 \ldots k}$, the $\lambda_{1} \wedge \cdots \wedge \lambda_{k}$ term of μ, equals $\sum_{l=1}^{k}\left(\partial / \partial y_{l}\right) \cdot r_{l}(\partial / \partial x)$. Let $\nu \in G^{k-1}\left(\mathbb{R}^{N}\right)$ be given by

$$
\nu=\sum_{l=1}^{l}(-1)^{l+1} r_{l}\left(\frac{\partial}{\partial x}\right) \lambda_{1} \wedge \cdots \wedge \lambda_{l-1} \wedge \lambda_{l+1} \wedge \cdots \wedge \lambda_{k}
$$

The $\lambda_{\mathbf{I}} \wedge \cdots \wedge \lambda_{k}$ term of δv equals $q_{12 \ldots k}$. Therefore

$$
\int_{\left[x_{j}\right]_{\ell \in J}} \phi_{l k}(\mu, f)=\int_{\left[x_{j}\right]_{j \in J}} \phi_{k}(\delta \nu, f)
$$

for all $f \in \mathscr{C}^{K}\left(\mathbb{R}^{N}\right)$ because $\lambda_{l}(C)=0$ for $l \in\{k+1, \ldots, N\}$.
A straightforward calculation using the definitions of ϕ_{k}, δ, and d shows that $\phi_{k}(\delta v, f)=d \phi_{k-1}(v, f)$ for all $f \in \mathscr{C}^{K}\left(\mathbb{R}^{N}\right)$. By Stokes' theorem for Euclidean simplices,

$$
\int_{\left[x_{j}\right]_{j \in J}} \phi_{k}(\mu, f)=\int_{\left[x_{j}\right]_{j \in J}} d \phi_{k-1}(\nu, f)=\sum_{\substack{I J J \\ \operatorname{card} I=k}} \int_{\left[x_{i}\right]_{i \in I}} \phi_{k-1}(\nu, f)
$$

Therefore

$$
\psi(\mu) \in \sum_{\substack{I C J \\ \operatorname{card} f=k}} B_{I}
$$

and ψ induces a well-defined linear surjection

$$
G^{k}\left(\mathbb{R}^{N}\right) / E \rightarrow B_{J} / B_{J} \cap \sum_{\substack{I \subset J \\ \operatorname{card} I=k}} B_{I}
$$

For each $l \in \mathbb{N}^{N-k}$ with $\mid l=k$, let

$$
\mu_{l}=\frac{\partial^{k}}{\partial y_{k+1}^{l_{1}} \cdots \partial y_{N}^{l_{N-k}}} \lambda_{1} \wedge \cdots \wedge \lambda_{k} \in G^{k}\left(\mathbb{R}^{N}\right)
$$

The representatives of $\left\{\mu_{l}\right.$ s.t. $\left.l \in \mathbb{N}^{N-k},|l|=k\right\}$ generate $G^{l}\left(\mathbb{R}^{N}\right) / E$, so

$$
\operatorname{dim} B_{I} / B_{J} \cap \sum_{\substack{I C J \\ \operatorname{card} I=k}} B_{I} \leqslant\binom{ k+(N-k)-1}{k}=\binom{N-1}{k}
$$

Since there are $\binom{K+1}{k+1}$ subsets of $\{0, \ldots, K\}$ which have cardinality $k+1$,

$$
\operatorname{dim} \sum_{\substack{J \subset\{0, \ldots, K\} \\ \operatorname{card} J \leqslant k+1}} B_{J} \leqslant\binom{ K+1}{k+1}\binom{N-1}{k}+\operatorname{dim} \sum_{\substack{I \subset\{0, \ldots, K\} \\ \operatorname{card} I \leqslant k}} B_{I}
$$

Therefore,

$$
\operatorname{dim} \sum_{J\{0, \ldots, K\}} B_{J} \leqslant \sum_{k=0}^{K}\binom{K+1}{k+1}\binom{N-1}{k}
$$

using induction starting at dim $\sum_{\operatorname{card} J \leqslant 0} B_{y}=0$.
This finishes the proof since

$$
\sum_{k=0}^{K}\binom{K+1}{k+1}\binom{N-1}{k}=\binom{K+N}{N}
$$

as is well known; see, e.g., [9, p. 822].
The following lemma is used to prove property (3.3) of χ.
Lemma 4.3. Let $N \in \mathbb{N}^{+}, K \in \mathbb{N}$, and $x_{0}, \ldots, x_{K} \in \mathbb{R}^{N}$ independent. For $J \subset\{0, \ldots, K\}$, let B_{J} be as defined in Lemma 4.2, above.

Let $g \in \mathscr{C}^{K}\left(\mathbb{R}^{N}\right)$ such that $T(g)=0$ for every $T \in \sum_{J c\{0 \ldots \ldots K\}} B_{J}$.
Then for every $k \in\{0, \ldots, K\}$, every $q \in Q^{k}\left(\mathbb{R}^{N}\right)$ and every $J \subset\{0, \ldots, K\}$ with card $J=k+1$, there exists $x \in\left[x_{j}\right]_{j \in J}$ such that $q(\partial / \partial x) g(x)=0$.

Proof. Let $C \subset \mathbb{R}^{N}$ be the linear span of $\left\{x_{j}-x_{i}\right.$ s.t. $\left.i, j \in J\right\}$, let y_{1}, \ldots, y_{k}
be a basis of C, complete it to a basis $y_{1}, \ldots, y_{k}, y_{k+1}, \ldots, y_{N}$ of \mathbb{R}^{N}, and let $\lambda_{1}, \ldots, \lambda_{N} \in \mathbb{R}_{N}$ be the dual basis. Let $\mu=q(\partial / \partial x) \lambda_{1} \wedge \cdots \wedge \lambda_{k} \in G^{k}\left(\mathbb{R}^{N}\right)$.

Choose an orientation for $\left[x_{j}\right]_{j \in J}$ and define

$$
T: \mathscr{C}^{K}\left(\mathbb{R}^{N}\right) \rightarrow \mathbb{R} \text { by } T(f)=\int_{\left[x_{j}\right]_{j \in J}} \phi_{k}(\mu, f)
$$

where ϕ_{k} is defined in Lemma 4.2. Then $T \in B_{J}$.
By hypothesis,

$$
T(g)=\int_{\left[x_{j}\right]_{j \in J}} q\left(\frac{\partial}{\partial x}\right) g(x) \lambda_{1} \wedge \cdots \wedge \lambda_{k}=0
$$

Since $\left[x_{j}\right]_{j \in J}$ is connected, $q(\partial / \partial x) g(x)$ is continuous, and $\lambda_{I} \wedge \cdots \wedge \lambda_{k}$ is a determinant function on C, there exists $x \in\left[x_{j}\right]_{j \in J}$ such that $q(\partial / \partial x) \times$ $g(x)=0$.

Corollary 4.4. Let $p \in P^{K}\left(\mathbb{R}^{N}\right)$ such that $T(p)=0$ for every $T \in \sum_{J \subset\{0, \ldots, K\}} B_{J}$. Then p is the zero polynomial.

Proof. By contradiction. Suppose $\operatorname{deg} p=k \in\{0, \ldots, K\}$. Then for every $i \in \mathbb{N}^{N}$ with $|i|=k$, there exists $x \in\left[x_{0}, \ldots, x_{k}\right]$ such that $\left(\partial^{|i|} / \partial x^{i}\right) p(x)=0$, so $\operatorname{deg} p \leqslant k-1$.

Corollary 4.5. $\operatorname{dim} \sum_{J c\{0 \ldots, K\}} B_{J}=\left({ }_{K}^{K+N}\right)$.
Proof. $\quad \operatorname{dim} P^{K}\left(\mathbb{R}^{N}\right)=\left({ }_{K}^{K+N}\right)$.
Remark 4.6. For $N \in \mathbb{N}^{+}, K \in \mathbb{N}$ and $x_{0}, \ldots, x_{K} \in \mathbb{R}^{N}$ independent, Lemmas 4.2 and 4.3 imply the existence of χ in Theorem 3.1. To see this, for all $J \subset\{0, \ldots, K\}$, let $B_{J} \subset \mathscr{D}^{K}\left(\mathbb{R}^{N}\right)$ be the set defined in Lemma 4.2 and let $\chi: \mathscr{C}^{K}\left(\mathbb{R}^{N}\right) \rightarrow P^{K}\left(\mathbb{R}^{N}\right)$ be given by the property that $T(\chi(f)-f)=0$ for all $f \in \mathscr{C}^{K}\left(\mathbb{R}^{N}\right)$ and all $T \in \sum_{J \subset\{0, \ldots, K\}} B_{J} \cdot \chi$ is well-defined and linear because of the duality between $\sum_{J \subset\{0, \ldots, K\}} B_{J}$ and $P^{K}\left(\mathbb{R}^{N}\right)$, proven in Lemma 4.2 and Corollary 4.4.

Then by Lemma 4.3, for every $f \in \mathscr{C}^{R}\left(\mathbb{R}^{N}\right)$, every $k \in\{0, \ldots, K\}$, every $q(\partial / \partial x) \in Q^{k}\left(\mathbb{R}^{N}\right)$, and every $J \subset\{0, \ldots, K\}$ with card $J=k+1$, there exists $x \in\left[x_{j}\right]_{j \in J}$ such that $q(\partial / \partial x)(\chi(f)-f)(x)=0$.

Proof of Theorem 3.1. It only remains to generalize the preceding remark to the case where x_{0}, \ldots, x_{K} are not necessarily distinct. For $k \in\{0, \ldots, K\}$, let $y_{k}=\left(x_{k}, 0, \ldots, 0,1,0, \ldots, 0\right) \in \mathbb{R}^{N+K+1}$, where the unit is in the $N+k+1$ st place. Let $\pi: \mathbb{R}^{N+K+1} \rightarrow \mathbb{R}^{N}$ be the projection onto the first N coordinates and let $\pi^{*}: \mathscr{C}^{K}\left(\mathbb{R}^{N}\right) \rightarrow \mathscr{C}^{K}\left(\mathbb{R}^{N+K+1}\right)$ be given by $\pi^{*}(f)=f \circ \pi$.

Since y_{0}, \ldots, y_{K} are independent, let $\psi: \mathscr{C}^{K}\left(\mathbb{R}^{N+K+1}\right) \rightarrow P^{K}\left(\mathbb{R}^{N+K+1}\right)$ be the map whose existence is proven in Remark 4.6 and define $\chi: \mathscr{C}^{K}\left(\mathbb{R}^{N}\right) \rightarrow P^{K}\left(\mathbb{R}^{N}\right)$
by $\pi^{*} \circ \chi=\psi \circ \pi^{*} . \chi$ is well defined because for $f \in \mathscr{C}^{K}\left(\mathbb{R}^{N}\right), \pi^{*}(f) \in$ $\mathscr{C} \mathscr{C}^{K}\left(\mathbb{R}^{N+K+1}\right)$ is independent of the last $K+1$ variables. By Proposition 3.7 (in case $K \geqslant 1$), so is $\psi \circ \pi^{*}(f)$. That is, $\psi \circ \pi^{*}(f)$ is a polynomial of degree at most K, in the first N coordinates of \mathbb{R}^{N+K+1} only.

Now choose $f \in \mathscr{C}^{K}\left(\mathbb{R}^{N}\right), q(\partial / \partial x) \in Q^{k}\left(\mathbb{R}^{N}\right)$, where $k \in\{0, \ldots, K\}$, and let $J \subset\{0, \ldots, K\}$ with card $J=k+1$. By Remark 4.6, let $y \in\left[y_{j}\right]_{j \in J}$ such that

$$
\begin{aligned}
q\left(\frac{\partial}{\partial x}\right) \pi^{*} \circ \chi(f)(y) & =q\left(\frac{\partial}{\partial x}\right) \psi \circ \pi^{*}(f)(y) \\
& =q\left(\frac{\partial}{\partial x}\right) \pi^{*}(f)(y)
\end{aligned}
$$

Then $q(\partial / \partial x)(\chi(f)-f)(\pi(y))=0$ and $\pi(y) \in\left[x_{j}\right]_{j \in J}$ because $\pi\left(y_{j}\right)=x_{j}$ for $j \in\{0, \ldots, K\}$.

Remark 4.7. Lemma 4.3 can be generalized to a statement about finite families of functions and differential operators. Let S be a finite indexing set and suppose $\left\{g_{s}\right\}_{s \in S} \subset \mathscr{C}^{K}\left(\mathbb{R}^{N}\right)$ such that $T\left(g_{s}\right)=0$ for every $s \in S$ and every $T \in \sum_{J \in\{0, \ldots, K\}} B_{J}$. (B_{J} has been defined only when x_{0}, \ldots, x_{K} are independent.) Then, for every $k \in\{0, \ldots, K\}$, every indexed set $\left\{q_{s}\right\}_{s \in S} \subset Q^{k(}\left(\mathbb{R}^{N}\right)$, and every $J \subset\{0, \ldots, K\}$ with card $J=k+1$, there exists $x \in\left[x_{i}\right]_{j \in J}$ such that $\sum_{s \in S} q_{s}(\partial / \partial x) g_{s}(x)=0$.

Therefore, if $\left\{f_{s}\right\}_{s \in S} \subset \mathscr{C}^{K}\left(\mathbb{R}^{N}\right)$, then there exists $x \in\left[x_{j}\right]_{j \in J}$ such that $\sum_{s \in S} q_{s}(\partial / \partial x)\left(\chi\left(f_{s}\right)-f_{s}\right)(x)=0$. The method of the preceding proof of Theorem 3.1 can be used to prove this when x_{0}, \ldots, x_{K} are not necessarily distinct.

As in Proposition 3.7, if $\sum_{s \in S} q_{s}(\partial / \partial x)\left(f_{s}\right)$ is identically zero, so is $\sum_{s \in S} q_{s}(\partial / \partial x)\left(\chi\left(f_{s}\right)\right)$.

Remark 4.8. The proof of Lemma 4.2 shows that, if x_{0}, \ldots, x_{K} are in general position in \mathbb{R}^{N} (that is, every subset of $\left\{x_{0}, \ldots, x_{R}\right\}$ of cardinality $N+1$ is independent), then $\chi(f)$ is well defined for $f \in \mathscr{C}^{M}\left(\mathbb{R}^{N}\right)$, where $H=$ minimum $\{K, N-1\}$. This corresponds to the fact that the Hermite interpolating polynomial $\chi(f)$, at distinct points $x_{0}, \ldots, x_{K} \in \mathbb{R}$, is defined for $f \in \mathscr{C}^{\circ}(\mathbb{R})$. In this case χ is, of course, Lagrange interpolation.

Remark 4.9. We will sometimes use the notation $\chi_{x_{0} \ldots \ldots x_{K}}$ to indicate the dependence of χ on the points of interpolation. For a fixed $f \in \mathscr{C}^{K}\left(\mathbb{R}^{N}\right)$, consider the symmetric mapping from $\left(\mathbb{R}^{N}\right)^{K+1}$ to $P^{K}\left(\mathbb{R}^{N}\right)$ which is given by $x_{0}, \ldots, X_{K} \mapsto \chi_{x_{0} \ldots x_{K}}(f)$. The techniques used here can also be used to show that this mapping is continuous.

Example 4.10. The conclusion of Theorem 3.1 cannot be strengthened to include non-homogeneous differential operators. For, let $K=1$, $x_{0}=(0,0)$, and $x_{1}=(1,0) \in \mathbb{R}^{2}$. Define $f(x, y) \in \mathscr{C}\left(\mathbb{R}^{2}\right)$ by $f(x, y)=$
$\left(6 x^{2}-6 x+1\right) y-6 x^{2}+6 x . \quad \chi(f)$ is the zero polynomial. Yet if $q(\partial / \partial x, \partial / \partial y)$ is the non-homogeneous operator $f \mapsto \partial f / \partial y+f$, $q(\partial / \partial x, \partial / \partial y) f(x, 0)=1$ for all $x \in[0,1]$.

5.

This section gives versions of χ for interpolating complex analytic functions and differential forms. \mathbb{C}^{N} is identified with $\mathbb{R}^{2 N}$ and a point $\left(z_{1}, \ldots, z_{N}\right) \in \mathbb{C}^{N}$ has real and imaginary components $\left(x_{1}, \ldots, x_{N}, y_{1}, \ldots, y_{N}\right)$.

Proposition 5.1. Let $N \in \mathbb{N}^{+}, K \in \mathbb{N}, z_{0}, \ldots, z_{K} \in \mathbb{C}^{N}$, and let χ be the interpolation at $\left(x_{0}, y_{0}\right), \ldots,\left(x_{K}, y_{K}\right) \in \mathbb{R}^{2 N}$ given in Theorem 3.1.

For $h: \mathbb{C}^{N} \rightarrow \mathbb{C}$, K times continuously differentiable, let $\chi(h)=\chi(f)+i \chi(g)$, where $h=f+i g$, real and imaginary parts.

If h is analytic, so is $\chi(h)$, that is, $\chi(h) \in P^{K}\left(\mathbb{C}^{N}\right)$.
Proof. If $K=0, \chi(f)$ and $\chi(g)$ are constants, so we may assume $K \in \mathbb{N}^{+}$. Then by Remark 4.7, since $f+i g$ satisfies the Cauchy-Riemann equations, $\partial f / \partial x_{n}-\partial g / \partial y_{n} \equiv 0$ and $\partial f / \partial y_{n}+\partial g / \partial x_{n} \equiv 0$ for all $n \in\{1, \ldots, N\}$, so does $\chi(f)+i \chi(g)$.

Remark 5.2. For a fixed analytic $h: \mathbb{C}^{N} \rightarrow \mathbb{C}$, the mapping from $\left(\mathbb{C}^{N}\right)^{K+1} \rightarrow P^{K}(\mathbb{C})$, which is given by $z_{0}, \ldots, z_{K} \mapsto \chi z_{0} \ldots z_{K}(h)$ is continuous because its real and imaginary parts are continuous. See Remark 4.9.

Remark 5.3. Consider the case where $N=1$ and w_{0}, \ldots, w_{K} are distinct complex numbers. If $h: \mathbb{C} \rightarrow \mathbb{C}$ is analytic, $\chi w_{0} \ldots w_{K}(h) \in P^{K}(\mathbb{C})$ and $\chi_{w_{0} \ldots w_{K}}(h)\left(w_{k}\right)=h\left(w_{k}\right)$ for $k \in\{0, \ldots, K\}$. As in the corresponding real case (Lagrange interpolation) these properties uniquely determine $\chi_{w_{0} \ldots w_{K}}(h)$.

Remark 5.4. The complex analytic analog of Proposition 3.9 holds. Let χ be the complex analytic interpolation at $z_{0}, \ldots, z_{K} \in \mathbb{C}^{N}$. If $\lambda \in \mathbb{C}_{N}$, the dual of \mathbb{C}^{N}, and $h: \mathbb{C} \rightarrow \mathbb{C}$ is analytic, then $\chi(h \circ \lambda)=\psi(h) \circ \lambda$, where $\psi(h)$ is the complex analytic interpolation of h at the points $\lambda\left(z_{0}\right), \ldots, \lambda\left(z_{K}\right) \in \mathbb{C}$. We omit a proof of this; it is similar to the proof of Proposition 3.9.

Remark 5.5. We define an interpolation of differential forms. Notation is explained in Remark 4.1. Let $N \in \mathbb{N}^{+}, K \in \mathbb{N}, x_{0}, \ldots, x_{K} \in \mathbb{R}^{N}$, and let χ be the interpolation of Theorem 3.1 at x_{0}, \ldots, x_{K}. For $n \in \mathbb{N}$, let $\chi: A^{n, K}\left(\mathbb{R}^{N}\right) \rightarrow$ $\left\{\omega \in A^{n, 0}\left(\mathbb{R}^{N}\right)\right.$ s.t. ω is a polynomial of degree $\left.\leqslant K\right\}$ be given by

$$
\chi\left(\sum_{1 \leqslant s_{1}<\cdots<s_{n} \leqslant N} f_{s_{1} \cdots s_{n}} \lambda_{s_{1}} \wedge \cdots \wedge \lambda_{s_{n}}\right)=\sum_{1 \leqslant s_{1}<\cdots<s_{n} \leqslant N} \chi\left(f_{s_{1} \cdots s_{n}}\right) \lambda_{s_{1}} \wedge \cdots \wedge \lambda_{s_{n}}
$$

Remark 5.6. If ω is a closed form ($d \omega$ is identically zero), then so is
$\chi(\omega)$, by a proof which uses Remark 4.7 in a manner similar to the proof of Proposition 5.1. However, if $\omega \in A^{n, K}\left(\mathbb{R}^{N}\right)$, then $d \omega \in A^{n+1, K-1}\left(\mathbb{R}^{N}\right)$ so $\chi(d \omega)$ is not defined in general and the statement " $\chi(d \omega)=d \chi(\omega)$ " is false.

6.

An application of χ is given. Consider a sequence $\left\{{ }_{{ }_{c}} T\right\}_{c \in \mathbb{N}}$ of distributions in $\mathscr{D}\left(\mathbb{R}^{N}\right)$, such that card supp ${ }_{c} T \leqslant K+1$ for all c and $\lim _{c \rightarrow \infty}$ $\max _{x \in \operatorname{Supp}_{c} T}\{|x|\}=0$. where $\operatorname{supp}_{c} T$ is the support of ${ }_{c} T$. That is, $\left\{{ }_{c} T\right\}$ is a sequence of linear combinations of $\leqslant K+1$ Dirac measures whose supports tend to the origin. Let $E \subset \mathscr{C}^{K}\left(\mathbb{R}^{N}\right)$ be the solution set of some differential equation $q(\partial / \partial x)(f) \equiv 0$, where q is a homogeneous operator and suppose $\lim _{c \rightarrow \infty}\left\{{ }_{e} T(p)\right\}$ exists for every $p \in E \cap P^{K}\left(\mathbb{R}^{N}\right)$. Under these hypotheses, the following theorem says that $\lim _{c \rightarrow \infty}\left\{{ }_{c} T(f)\right\}$ exists for every $f \in E$.

Theorem 6.1. Let $N \in \mathbb{N}^{+}$and $K \in \mathbb{N}$. Let $\left\{_{c} T\right\}_{c \in \mathbb{N}}$ be a sequence of distributions in $\mathscr{D}^{K}\left(\mathbb{R}^{N}\right)$, each having finite support. For each $c \in \mathbb{N}$, let ${ }_{a} J=-1+$ card $\operatorname{supp}_{c} T$ and let $\operatorname{supp}_{c} T=\left\{{ }_{0} y_{0}, \ldots,{ }_{c} y_{0} r\right\} \subset \mathbb{R}^{N}$. For each $c \in \mathbb{N}$ and $j \in\left\{0, \ldots,{ }_{c} J\right\}$, let ${ }_{c} M_{j}$ be the order of ${ }_{c} T$ at ${ }_{c} y_{j}$, and suppose that $\sum_{j=0}^{J}\left({ }_{c} M_{j}+1\right)=K+1$ for all c and $\left.\lim _{c \rightarrow \infty} \max _{j \in\{0} \ldots \ldots, c_{c}\right\}\left|{ }_{a} y_{j}\right|=0$.

Explicitly for each $c \in \mathbb{N}$, there exists a finite indexed set of real numbers

$$
\left\{\left\{_{c} a_{j m}\right\}_{j \in\left\{0, \ldots, c^{J}\right\} m \in \mathbb{N}^{N} \mathrm{~s} . \mathrm{t} .}|m| \leqslant{ }_{c} M_{j}\right.
$$

such that

$$
{ }_{e} T(f)=\sum_{j=0}^{e^{J}} \sum_{\substack{m \in \mathbb{N}^{N} \\|m| \leqslant{ }_{e} M_{j}}} a_{j m} \frac{\partial|m|}{\partial x^{m}} f\left({ }_{e} y_{j}\right)
$$

for all $f \in \mathscr{C}^{K}\left(\mathbb{R}^{N}\right)$.
Let F be any linear subspace of $\oplus_{k=0}^{K} Q^{k}\left(\mathbb{R}^{N}\right)$ such that, if $q(\partial / \partial x) \in F$, then each homogeneous part of q is also in F, and let

$$
E=\left\{f \in \mathscr{C} K\left(\mathbb{R}^{N}\right) \text { s.t. } q\left(\frac{\partial}{\partial x}\right)(f) \equiv 0 \text { for every } q \in F\right\} .
$$

Suppose that $\{c T(p)\}_{c \in \mathbb{N}}$ converges for every $p \in E \cap P^{K}\left(\mathbb{R}^{N}\right)$. Then, for each $f \in E,\left\{_{0} T(f)\right\}_{c \in \mathbb{N}}$ converges to $\lim _{c \rightarrow \infty}\left\{\left\{_{0} T\left(\chi_{0}(f)\right\}\right.\right.$ where $\chi_{0}(f)$ is the Taylor polynomial of f up to order K at the origin.

Proof. Since F is generated by its homogeneous elements, $\chi_{0}(f) \in E$ and $\lim _{c \rightarrow \infty}\left\{{ }_{0} T\left(\chi_{0}(f)\right\}\right.$ exists by the hypothesis on $\left\{_{0} T\right\}$.
For each $c \in \mathbb{N}$, choose ${ }_{c} x_{0}, \ldots,{ }_{c} x_{K} \in \mathbb{R}^{N}$ such that, for each $j \in\left\{0, \ldots,{ }_{e}{ }^{J}\right\}$, ${ }_{e} x_{k}={ }_{e} y_{j}$ for ${ }_{c} M_{j}+1$ values of $k \in\{0, \ldots, K\}$. This is possible because
$\sum_{j=0}^{J}\left({ }_{c} M_{j}+1\right)=K+1$. For each $c \in \mathbb{N}$, let ${ }_{c} \chi$ be the interpolation of Theorem 3.1 at ${ }_{c} x_{0}, \ldots,{ }_{c} x_{K}$.

Given $\epsilon>0$, it suffices to find $C \in \mathbb{N}$ so large that $\mid{ }_{c} T(f)-T\left(\chi_{0}(f) \mid \leqslant \epsilon\right.$ for all $c \geqslant C$, where $T\left(\chi_{0}(f)\right)=\lim _{c \rightarrow \infty}\left\{{ }_{c} T\left(\chi_{0}(f)\right)\right\}$. Fix $L>0$ so large that, for each $c \in \mathbb{N}$ and each $p \in E \cap P^{K}\left(\mathbb{R}^{N}\right)$ having the absolute value of all coefficients $\leqslant 1,\left|{ }_{c} T(p)\right| \leqslant L$.

By Remark 4.9, the mapping from $\left(\mathbb{R}^{N}\right)^{K+1}$ to $P^{K}\left(\mathbb{R}^{N}\right)$ given by $y_{0}, \ldots, y_{K} \mapsto$ $\chi_{y_{0}, \ldots, y_{K}}(2 L f / \epsilon)$ is continuous. Choose $C \in \mathbb{N}$ so large that, for each $c \geqslant C$, $\left(c \chi-\chi_{0}\right)(2 L f / \epsilon)$ has the absolute value of each of its coefficients $\leqslant 1$, and also, for $c \geqslant C,{ }_{e} T\left(\chi_{0}(f)\right)-T\left(\chi_{0}(f) \mid \leqslant \epsilon / 2\right.$.

For all $c,{ }_{c} T(f)={ }_{e} T\left({ }_{c} \chi(f)\right)$ because $f-{ }_{c} \chi(f)$ is flat of order ${ }_{c} M_{j}$ at ${ }_{c} y_{j}$ for $j \in\left\{0, \ldots,{ }_{c} J\right\}$ (Remark 3.4). Therefore, for $c \geqslant C$,

$$
\begin{aligned}
\left|{ }_{c} T(f)-T\left(\chi_{0}(f)\right)\right| \leqslant & \left|{ }_{c} T\left({ }_{c} \chi-\chi_{0}\right)(f)\right| \\
& +\left|{ }_{c} T\left(\chi_{0}(f)\right)-T\left(\chi_{0}(f)\right)\right| \\
\leqslant & \frac{\epsilon}{2}+\frac{\epsilon}{2}
\end{aligned}
$$

because $\left({ }_{c} \chi-\chi_{0}\right)(2 L f / \epsilon)$ has the absolute value of each coefficient $\leqslant 1$ and also belongs to E, by Proposition 3.7, so

$$
\left|{ }_{c} T\left({ }_{c} \chi-\chi_{0}\right)\left(\frac{2 L f}{\epsilon}\right)\right| \leqslant L
$$

from the definition of L.
Remark 6.2. The special case of the preceeding theorem for $F=\{0\}$, $E=\mathscr{C}^{K}\left(\mathbb{R}^{N}\right)$ was essentially given by Glaeser in [4]. Bloom [1] gives the complex analytic version, which may also be proven using Proposition 5.1. $\chi(f)$ is the same as the interpolation used there whenever $f \in P^{K+1}\left(\mathbb{C}^{N}\right)$. In that case, the method used in [1] to interpolate f coincides with the method given here in the next section.

7.

Proposition 7.3 can be used to find $\chi(f)$ without evaluating integrals, whenever f is a polynomial.

Remark 7.1. Let W_{0}, \ldots, W_{K} be indeterminates. For $M \in \mathbb{N}$, there exist unique polynomials.

$$
\sigma_{0}\left(W_{0}, \ldots, W_{K}\right), \ldots, \sigma_{K}\left(W_{0}, \ldots, W_{K}\right) \in \mathbb{R}\left[W_{0}, \ldots, W_{K}\right]
$$

the ring of polynomials with real coefficients in $K+1$ indeterminants, such that

$$
\begin{equation*}
W_{k}^{M}=\sum_{l=0}^{K} \sigma_{l}\left(W_{0}, \ldots, W_{k}\right) \cdot W_{k}^{l} \quad \text { for } k \in\{0, \ldots, K\} . \tag{7.2}
\end{equation*}
$$

For uniqueness, if $\tau_{0}, \ldots, \tau_{K}$ is another such family of polynomials, then by Cramer's rule,

$$
\left(\sigma_{l}-\tau_{l}\right)\left(W_{0}, \ldots, W_{K}\right)\left|\begin{array}{cccc}
1 & W_{0} & \cdots & W_{0}{ }^{K} \\
\vdots & \vdots & & \vdots \\
1 & W_{K} & \cdots & W_{K^{K}}{ }^{K}
\end{array}\right|=0
$$

for $l \in\{0, \ldots, K\}$ and the van der Monde determinant is not zero. For existence, if $M \in\{0, \ldots, K\}, \sigma_{M}=1$ and $\sigma_{l}=0$ if $l \neq M$. If existence is proven up to $M \geqslant K$, then the formula

$$
W_{k}^{M+1}=\sum_{l=0}^{K} \tau_{l}\left(W_{0}, \ldots, W_{K}\right) \cdot W_{k}^{M-\bar{l}} \quad \text { for } k \in\{0, \ldots, K\}
$$

gives an inductive step, where $-\tau_{l}$ is the elementary symmetric polynomial of degree $l+1$.

If real numbers are substituted for W_{0}, \ldots, W_{K}, then $\sigma_{l}\left(x_{0}, \ldots, x_{K}\right)$ is the coefficient of x^{l} in the Hermite interpolating polynomial at x_{0}, \ldots, x_{K} for the function $f \in \mathscr{C}^{K}(\mathbb{R})$ given by $f(x)=x^{M}$.

Proposition 7.3. Let $N \in \mathbb{N}^{+}, K \in \mathbb{N}$, and $x_{0}, \ldots, x_{K} \in \mathbb{R}^{N}$. Also, let $M \in \mathbb{N}$ and define $\sigma_{0}, \ldots, \sigma_{K} \in \mathbb{R}\left[W_{0}, \ldots, W_{K}\right]$ by (7.2). Then, for each $m \in \mathbb{N}^{N}$ with $|m|=M$,

$$
\chi_{x_{0}, \ldots, x_{K}}\left(\frac{M!}{m!} x^{m}\right)=\sum_{\substack{k \in \mathbb{N}^{N} \\ M \in K \leqslant \mid k!\\ k \leqslant m}} \frac{|m-k|!}{(m-k)!} \alpha_{k} x^{m-k}
$$

where α_{k} is the coefficient of V^{k} in

$$
\sigma_{M-|k|}\left(x_{01} V_{1}+\cdots+x_{0 N} V_{N}, \ldots, x_{K 1} V_{1}+\cdots+x_{K N} V_{N}\right)
$$

$\left(V_{1}, \ldots, V_{N}\right.$ are indeterminates, $V^{k}=V_{1}^{k_{1}} \cdots \cdots \cdot V_{N}^{k_{N}}$ and the components of x_{k} are $\left(x_{k 1}, \ldots, x_{k N}\right)$ for $k \in\{0, \ldots, K\} . \chi_{x_{0}, \ldots, x_{K}}$ is interpolation at x_{0}, \ldots, x_{K}.)

Proof. Let $p: \mathbb{R} \rightarrow \mathbb{R}$ be given by $p(w)=w^{M}$, so for every $\left(\lambda_{1}, \ldots, \lambda_{N}\right)=$ $\lambda \in \mathbb{R}_{N}$ and every $\left(y_{1}, \ldots, y_{N}\right)=y \in \mathbb{R}^{N}, p \circ \lambda(y)=\sum_{m \in \mathbb{N}^{N}|m| \leqslant M}(M!/ m!) y^{m} \lambda^{m}$.

By Proposition 3.9,

$$
\begin{align*}
& \chi_{x_{0} \cdots x_{K}}(p \circ \lambda)(y) \\
& \quad=\chi_{\lambda\left(x_{0}\right) \cdots \lambda\left(x_{K}\right)}(p)(\lambda(y)) \tag{7.4}\\
& \quad=\sum_{l=0}^{K} \sigma_{l}\left(x_{01} \lambda_{1}+\cdots+x_{0 N} \lambda_{N}, \ldots, x_{K 1} \lambda_{1}+\cdots+{ }_{K N} \lambda_{N}\right)\left(y_{1} \lambda_{1}+\cdots+y_{N} \lambda_{N}\right)^{l}
\end{align*}
$$

Here, $\chi_{\lambda\left(x_{0}\right) \ldots \lambda\left(x_{K}\right)}$ is interpolation in \mathbb{R}^{1} at $\lambda\left(x_{0}\right), \ldots, \lambda\left(x_{K}\right)$. For any fixed $m \in \mathbb{N}^{N}$ with $|m|=M$ and each $k \in \mathbb{N}^{N}$ such that $M-K \leqslant|k|$ and $k \leqslant m$, the coefficient of y^{m-k} in the right-hand side of (7.4) is

$$
\begin{aligned}
& \sigma_{M-|\bar{k}|}\left(x_{01} \lambda_{1}+\cdots+x_{0 N} \lambda_{N}, \cdots, x_{K 1} \lambda_{1}+\cdots+x_{K N} \lambda_{N}\right) \cdot \frac{|m-k|!}{(m-k)!} \lambda^{m-k} \\
& \quad=\sum_{\substack{j \in \mathbb{N} N \\
|j|=\mid k]}} \alpha_{j} \frac{m-k \mid!}{(m-k)!} \lambda^{m-k+j}
\end{aligned}
$$

because $\sigma_{M-|k|}$ is homogeneous of degree $|k|$. Hence the right-hand side of (7.4) is

$$
\begin{equation*}
\sum_{\substack{k \in \mathbb{N}^{N} \\ M \in K \leq|k| \\ k \leqslant \leqslant}}\left(\sum_{\substack{j \in \mathbb{N}^{N} \\|j|=|k|}} \alpha_{j} \frac{|m-k|!}{(m-k)!} \lambda^{m-k+j}\right) y^{m-k} . \tag{7.5}
\end{equation*}
$$

Now, let $S=\binom{M+N-1}{M}$ and choose $\lambda_{1}, \ldots, \lambda_{S} \in \mathbb{R}_{N}$ and $a_{1}, \ldots, a_{S} \in \mathbb{R}$ such that $\sum_{s=1}^{s} a_{s} p \circ \lambda_{s}(y)=(M!/ m!) y^{m}$ for every $y \in \mathbb{R}^{N}$. That is, for $j \in \mathbb{N}^{N}$ with $|j|=M, \sum_{s=1}^{s} a_{s} \lambda_{s}{ }^{j}=1$ if $j=m$ and equals zero otherwise. Then by linearity of $\chi_{x_{0} \ldots x_{K}}$ and applying (7.5),

$$
\chi_{x_{0} \cdots x_{K}}\left(\frac{M!}{m!} x^{m}\right)(y)=\sum_{\substack{k \in \mathbb{N}^{N}| \\M \leqslant|k| \\ k \leqslant m}} \alpha_{7 s} \frac{|m-k|!}{(m-k)!} y^{m-k}
$$

for every $y \in \mathbb{R}^{N}$.
Remark 7.6. The complex version of Proposition 7.3 can be stated and proven by writing \mathbb{C} rather than \mathbb{R} and referring to Remark 5.4 rather than Proposition 3.9.

Acknowledgments

The contents of this paper appear in my thesis at the University of Toronto. I am grateful for the encouragement of my supervisor, Thomas Bloom, who conjectured Theorem 6.1. I also had many helpful discussions with Ed Bierstone and Pierre Milman.

References

1. T. Bloom, On the Zariski tangent space to a complex analytic variety, Math. Ann. 214 (1975), 159-166.
2. C. de Boor, Polynomial interpolation, Proc., Int. Cong. Helsinki (1978), in press.
3. H. Flanders, "Differential Forms," Academic Press, New York, 1963.
4. G. Glaeser, L'interpolation des fonctions différentiables de plusieurs variables, Proc. Liverpool Singularities-Symposium II, Lecture Notes in Mathematics No. 209, Springer-Verlag, Berlin/Heidelberg/New York, 1971.
5. P. Kergin, "Interpolation of C^{K} Functions," Thesis, University of Toronto, 1978.
6. C. Micchelli and P. Milman, A formula for Kergin interpolation in R^{k}, J. Approxima tion Theory 29 (1980), 294-296.
7. F. Treves, "Topological Vector Spaces, Distributions, and Kernels," Academic Press, New York, 1967.
8. B. Wendroff, "Theoretical Numerical Analysis," Academic Press, New York, 1966
9. M. Abramowitz and A. Stegun, "Handbook of Mathematical Functions," Dover, New York, 1965.

[^0]: *Supported in part by University of Toronto Open Scholarships and by the National Research Council of Canada.

