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1. INTRODUCTION

This paper gives a linear projection y from the space of K times conti-
nuously differentiable functions on R¥ onto the space of polynomials of
degree <K on RM. The projection depends only on K + 1 fixed points
X 5eees Xg € RV,

When N = 1, x(f) is the Hermite interpolating polynomial of f at
X »eer Xx € R, i.e., the polynomial p of degree <<K for which f — p vanishes
at xg ..., Xx , with repetitions in the x; giving rise to a multiple zero of f — p
in the uwsual way. One method of computing p is solving a system of X + 1
linear equations in X -+ 1 unknowns. The unknowns are the coefficients of p
and the equations are p(x;) = f(x) (k = 0,..., K) if x,,..., xx are distinct.

A straightforward generalization of the Hermite interpolation problem
to RY (N = 2) can be stated: if xy,..., Xy are points in R and f: R¥N — R,
find a polynomial p: RY — R, of degree <<K, such that (p — f)(x;) =0
for all k. Again, when x, ,..., xx are distinct, p can be found by solving a
system of K- 1 linear equations, but now there are (¥3") unknowns,
and p is no longer uniquely determined if X > 1.

Additional conditions must be imposed on p to ensure that it is unique.
Glaeser, in his ‘“‘schemes of interpolation” given in [4], requires that p lie
in a K + 1-dimensional subspace of the space of polynomials of degree
< K. The choice of subspace is arbitrary among those subspaces of dimension
K -+ 1 which contain a solution of the linear system p(x;) = f(xz)
(k = 0,..., K) for all /. The only information needed to find p is the values of
fat xy .., Xx .

Here, we impose the conditions: p must depend linearly on fand, if g(8/0x)
is a constant coefficient differential operator having terms all of the same order
k €{0,..., K}, then ¢(¢/2x) (p — f) must equal zero at some point in the con-
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vex hull of any k -+ 1 of the points x, ,..., Xx . Thus, if fis a solution of the
equation g{(9/ex)(f) = 0, so is p.

The proof of the existence of x:f+> p given here is an application of
Stokes’ theorem. For example, let K = 1 and x, = (0,0), x, = (1, 0) e R2
If f is continuously differentiable, we require that p{xy) = f{xg), p(x) =
fGx), and [o (8p/ay)x, 0) dx = [o (&f/oy)(x, 0) dx. Let g(3/0x, 8/dy) =
a(e/ox) 4 b(e/oy), where a, b R. Then

f: 7 (% §y—) (p — ), 0) dx

+bf:—§y~(p~f)(x,0)dx

by the mean value theorem, and this equals zero. Therefore, there exists
x € [0, 1] such that g(8/ox, 0/oy) (p — f)(x,0) = 0.

Micchelli and Milman [6] give a proof of the existence of y by exhibiting
an explicit expression for y(f), analogous to Newton’s form of Hermite
interpolation.

Sections 3-and 4 prove the uniqueness, existence, and some properties
of x. Section 5 gives versions of y for complex analytic functions and real
differential forms. Section 6 is an application to a problem of convergence
of distributions and Section 7 contains a formula not involving integrals
for calculating ¥( f) when f'is a polynomial.

2.

We use the following notation: N ={0,1,2,...} and N+ = {1,2,.}.
If N e N+, Ry and Cy represent the algebraic duals of RY and C¥. The dimen-
sion of a finite-dimensional vector space E over R is written dim E.

If J is a finite set, card J is the number of elements in J. An indexed subset
of R¥, {x;};cs , has convex hull [x;];c, .

For a polynomial p: RV — R or p: CY — C, degp is its degree. If K& N,
PX(RN) and PX(CV) are the Hausdorff vector spaces of real and complex
polynomials of degree <<K.

A multi-index is an element of NV, If

J = (s jn) €NV, ljl=ja++ix and  j! =j! - jul
If also ie NV, then i <j whenever i, < j, for all n. In this case, (}) =

JYI(G — DL If xeRY or CV, then ¥/ = X e X, 9¥1/ax’ is the differential
operator on RY, 8lil/(dx* -+ x3Y). OX(RY) is the real vector space of con-
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stant coefficient differential operators which are homogeneous of order X.
That is, an element g of Q¥(RY) is a linear combination of operators o17!/0x
such that [j| = K.

FX(RY) is the vector space of K-times continnously differentiable functions
fi RN — R. It has the topology of uniform convergence of derivatives of
order <K on compact sets, given by the family of seminorms

L
7 ey e
XE,

where X ranges over all compact subsets of RY. ZX(RY) is the vector space of
continuous linear functionals on ZX(RY).

3.

This section proves uniqueness of the map y of the following theorem.
Existence is proven in Section 4.

THEOREM 3.1. Let NeN*, KeN, and x,,..., xx € RY, not necessarily
distinct. There is a unique y: €X(RY) — PX(RN) satisfying:

(3.2) x is linear.

(3.3) for every feBKRY), every qe Q¥RY), where k<{0,.., K},
and every J C{0,..., K} with card J = k + 1, there exists x € [X;];e; Such that
q(0/0x)(x(f) — f)x) = 0.

Remark 3.4. Let y be one of the points xy ,..., Xx , let J = {je{0,..., K}
s.t. x; = »}, and let m €{0,..., card J — 1}. Property (3.3) implies, for every
Fe€E(RY) and ie N¥ with | 7| = m, that there exists x € [x;];c; such that
@4 joxx(f) — f)x) = 0. That is, x(f) — f is flat of order card J — 1
at y. If N = 1, this is precisely the property that characterizes the Hermite
interpolating polynomial of f° because deg y(f) << K. See Wendroff |8,
Chapter 1].

For all N, x(f) is indeed an interpolation of f at Xx,,..., xx because

(x(f) — f)(x;) = O for all j.

PROPOSITION 3.5. If y: €K(RY) — PX(RY) satisfies (3.2) and (3.3), it is
continuous.

Proof. Choose § > 0 so small that, if p € PX(RY) satisfies the property
that, for every i e NV with | i | < K, there exists x € [x;];ct0.....x3 (depending.
on i} such that [(0¥1/6x?) p(x)| < 8, then p also satisfies the property that
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each of its coefficients is in absolute value <1. By (3.3) applied to the differ-
ential operators 9°1/ox?, if f e ¥X(RY) such that

max % ifﬁf(x)RgS

NN i <K oxt
xe[x;leto..... K}

then the absolute value of each coefficient of »( f) is <1.

Remark 3.6, The next proposition shows that if a function f in €*(R")
is a solution of the differential equation ¢(8/2x) f(x) = 0, where g is a homo-
geneous constant coefficient operator, then x( f) is also a solution. In parti-
cular, if fis zero along a constant vector field, so is y( f).

ProPOSITION. 3.7. Let Ke N and suppose y: €¥(RY) — PX(RN) satisfies
(3.3). Let g € QXRY), where k €{0,..., K} and f'€ CK(RY) such that q(3/9x)(f)
is identically zero. Then q(0/ox)(x(f)) is identically zero.

Proof. Let x(f) = py, + - + px be the homogeneous decomposition
of x( f). It suffices to show for each [ € {k,..., K}, that g(8/0x)( p;) is identically
zero. We use decreasing induction. Fix L €{k,..., K} and make the inductive
hypothesis that g(8/0x)( p;) is identically zero for / > L. The hypothesis
is trivial if L = K.

By property (3.3), for each i e NV with |i| = L — k, there exists x ¢ RY
such that

ol?l

1 () XD = -1 () 7 =0

ox

Therefore,

e a(2) pu) = 25 g () (ot 2 = 0

because for / << L, deg p, < the order of (8'¢/ox) - ¢(d/0x) and by the
inductive hypothesis for [ > L.

But g(0/6x)( pr) is homogeneous of degree . — k and each of its derivatives
of order L — k is zero at some point in RY, so it is identically zero.

Remark 3.8. Proposition 3.9 shows, if fe FX(RY) is constant on each
hyperplane in RY which is parallel to some fixed hyperplane, then ()
is also constant on each of the hyperplanes.

ProposITION 3.9. Let KeN and suppose y: €K(RY) — PX(RY) satisfies
(3.2) and (3.3). Let Ae Ry be a linear functional on RY and let fe EX(R).

Then x(foX) = J{(f) X, where J{(f) is the Hermite interpolating poly-
nomial of [ at Mxg),..., AM(xg).
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Proof. We may assume A £ 0.

Let g: R — R be given by (go A)(x) = x(f o A)(x). To show g is well-
defined, fix w and x € RY such that M(w) = A(x). Let ¢q(8/éx) = ZLI U, X
o/ex, € QY(RYN), where v, is the nth component of w — x. Since g(8/2x)(A)
is identically zero on RY, so is g(8/éx)(foA) if K e N+ Therefore
g(@/0x)(x(foA)) is identically zero, by Proposition 3.7 if KeN* and
because deg x(foA) = 0 if K = 0. In particular, y(foA) is constant on
the line segment joining x to w. ‘

Now g € PX(R). For, choose any linear y: R — RY such that Aoy is the
identity on R. Then g = y(foA)oy.

Let y € R be any one of the points A(xp),..., A(xy), let J = {je{0,..., K}
s.t. A(x;) = )}, and let k = card J — 1. By Remark 3.4, it only remains to
show that g — fis flat of order k at y.

Fix me{0,..., k} and choose ne{l,..., N} such that (9/6x,) A £ 0. By
property (3.3), there exists xe&[x;);c; such that (6™/0x,™)(x(f°A) —
(foA)(x) = 0. Since goA = y(foA), (6"/0x,"}(g — f) o (x) = 0. Ap-
plying the chain rule, (d™/dy™) g — f)(M(x)) - (8A/6x,)™ = 0. But x € [x;);es
and A(x;) = y for all jeJ, so A(x) = y and (d™/dy™)(g — f)y) = 0.

COROLLARY 3.10. 1y is unique.

Proof. Since the polynomials are a dense linear subspace of F*(RY)
(see Treves [7, p. 160]) and y is continuous (Proposition 3.5) it suffices to
show that the restriction of y to the space of polynomials in RY is unique.
But every polynomial in R¥ can be written as a sum of polynomials of the
form p o A, where A€ Ry and p is a polynomial in R. By Proposition 3.9,
x(p o A) = H(p) o A and the corollary follows by linearity of y.

4,

The existence of y is proven here by defining a certain subspace of ZX(RY),
showing that the dimension of this subspace is (*3") = dim PX(RY), and
requiring, for each of its elements 7 and each fe%%(RY), that
I(x(f)—f)=0.

Remark 4.1. The following notation for differential forms is used in
this section and Section 5. For Ne N+ and k, me N, let A*™(R") be the
vector space of differential & forms on R™ which are m times continuously
differentiable. An element w of 4*™(RY) will be written

w = > Sogeess, A0 A Ay,

1<, < <5 <N

where A;,..,Ay is a basis of Ry and f, . €¥™RY). For meNH,
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d. AB(RV) — A*Lm-LYRYN) i the exterior derivative, given by

N oo
do = Y Z fs1 fm AR A A A,

1<sl< <sk<Nn 1

where y, ,..., Yy € RV is the dual basis of A ,..., Ay, and /0y, = Z;Ll Y X
(8/ox;) € QYRY), y,; being the /th component of y,, .

Similarly, let G*(RY) denote the vector space, @X{R") ® the kth exterior
product of R, . An element p of G*(RY) will be written

B = Z /e (_éa'_;) )‘31 A A }\31: ’

1gs, <N

where ¢, € Q¥(R"). Define 8: GK(RY) — G**(R") by

N

d 0
() = T s L A A A A A AL
) 1<31<--Z<S;c<N ngl Pn o ( ox ) ' *

LemMma 4.2. Let NeN+*, KeN, and Xg ge-es Xg € RY mdependent (that
is, if a,eR for ke{0,.., K} with Zk 0 d = 0 and Zk o &Xy = 0, then
a, = 0 for all k).

For each k €{0,..., K}, let

9510 : Gk(RN) X %K(RN) s Ak,K—k(RN}

be the bilinear map given by

by ( Y s, (_2%_) Agg A A Qg ,f)

18 <o KN

7
1@1;%%@, Qoo () (D A A AN,
(s is independent of the choice of basis Ay ,..., Ay of Ry.)

For JC{0,..., K} with card J = k + 1, let B, = {T € QX(RN) s.t. there
exists p € GHRY) such that T(f) = f[mﬂgef Silp, f) for every fe EX(RN)L.
Also, let B, = {0} C DX(RY).

Then dim Yscq.....50 B < %)

(Equality is proven in Corollary 4.5.)

.....

Proof. We show first, for each non-empty J C {0,..., K}, that

N — Iy

2 B) <"} )
cardl=k

dim (B,/BJ N
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where kK +1 = card J. If k = 0, B, is the one-dimensional subspace of
DK(RN) generated by the Dirac measure at some Xx;, SO suppose that
ke{l,..., K}.

Choose an orientation for [x;];c; and for every 1CJ with card [ = &,
give [x;l;c; the orientation induced by that of [x;l;c; . Let : GH(RY) — B,
be given by

W0 = [ )
Tiljer
for fe €X(RY). ¢ is linear and onto by the definition of B; .

Let CCRY be the subspace generated by {x; — x; s.t. £, jeJ} so that
dim C =k, by the independence of {x;};.;. Fix p,,..., ¥z, & basis of C,
complete it to a basis ¥y ,..., Vi , Vesn »- Yy Of RY, and let A, ,..., Ay be the
dual basis. Also let

E = Ispoes (ﬁ) ’\51 A A )\ske GHRN) s.t.

ox

18 < <8N
Grge-k (——a%) is of the form é% ( ) + e b é—y; i (%)
where 7y ,..., I, € Q’“—l([RN)g.

We will show for each p € E, that

pwe Y Br.

iy
cardi=k

For, fix Tises % € O Y(RY) such that ¢y, 5, the Ay A =+ A Ay term of p,
equals 21_1 (6/ ay) - ri(6/0x). Let v € G*1(RY) be given by

k
:Z 1)’+1r,( )/\ Ao Ay A Dy A A Ay

The Ay A - A Ay term of &v equals ¢y, . Therefore

bulps, ) = j[ (v, f)

Lol jer x5ljer

for all £ €X(RY) because A(C) = 0 for le{k + 1,..., N}
A straightforward calculation using the definitions of ¢, 8, and & shows

that &(8v, f) = ddp_y(v, ) for all fe FE(RY). By Stokes’ theorem for
Euclidean simplices,

[, #wn =] b= % [ sl

#iljer %) jer ICr  Ylegdeer
cardl=k
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Therefore
) e Z B

IcJ
cardl=k

and i induces a well-defined linear surjection

Gk(RN)/E*-)BJ/B]n z BI .
Cal{(cl:}’=k

For each I NV-* with | /| = k, let

ak
Byl

Hy = & AL A A A € GHIRN),

k+1
The representatives of {u; s.t. e N¥—*, | ]| = k} generate G*(RY)/E, so
dim BJ/BJ M 2 B[ < (

Icy
cardI=k

k+(N}:k)—1):(N;€—1)_

Since there are (§7) subsets of {0,..., K} which have cardinality k -+ 1,

. K4+ 1\yN—1 .
dim B; < . + dim - B.
JC{O;Z...,K} ! (k + 1)( K ) 1c10§.,1{} !
cardJ<k+1 cardlgk

Therefore,

: E K+ 1 N—1
dim By < ) \ s
JC{o,Zf.,K} T kzo (k e 1)< k )
using induction starting at dim Y ¢arqs<o By = 0.
This finishes the proof since
& (K4 1N —1 K+ N
kgb(kLl)( k ):( N )

as is well known; see, e.g., [9, p. 822].
The following lemma is used to prove property (3.3} of y.

Levma 4.3, Let NeN+, KeN, and xg,..., xx € RY independent. For
JCA{0,..., K}, let B; be as defined in Lemma 4.2, above.

Let g € €X(RY) such that T(g) = 0 for every T€ Y jc0....10 By

Then for every ke{0,.., K}, every g QMRY) and every JC{0,..., K}
with card J = k -+ 1, there exists x € [x,];e; such that q(8/0x) g(x) = 0.

Proof. Let CC RY be the linear span of {x; — x;s.t. i, jeJ}, let y; ..., ¥
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be a basis of C, complete it to a baSIS Yy 5oy Vi » Vier1 »e--» Y Of RY, and let
Ay 5.y Ay € Ry be the dual basis. Let p = q(8/8x) A, A = A A, € GH(RY).
Choose an orientation for [x;};.; and define

TR~ Rby T(H) = [ $ulw. ),
Zilier
where ¢, is defined in Lemma 4.2. Then T'e B, .
By hypothesis,

0

T() = [  a(5)e@Maad =0

©ilier
Since [xj]je ; is connected, ¢(8/ox) g(x) is continuous, and Ay A ©- A A
is a determinant function on C, there exists x € [x;];c, such that ¢(&/6x) X

gx) = 0.

COROLLARY 4.4. Let pePXRY) such that T(p)=0 for every
Te ... x Br. Then p is the zero polynomial.

Proof. By contradiction. Suppose degp = k €{0,..., K}. Then for every
ie N¥ with | 7| = k, there exists x € [x, ,..., xz] such that (8!¢}/0x%) p(x) = O,
sodegp < k— 1.

COROLLARY 4.5. dim Y ;cq

.....

Proof. dim PE(RY) = (X£).

Remark 4.6. For NeNt, KeN and x,,.., Xz RY independent,
Lemmas 4.2 and 4.3 imply the existence of y in Theorem 3.1. To see this,
for all / C{0,..., K}, let B, C Z%(R™) be the set defined in Lemma 4.2 and let
x: €RY) — PX(RY) be given by the property that T(x(f) — f) = 0 for all
Sfe€X(RYyand all Te ¥ ;... x By x is well-defined and linear because of
the duality between > ,cq.....x3 By and PX(RY), proven in Lemma 4.2 and
Corollary 4.4.

Then by Lemma 4.3, for every fe @%X(RY), every ke{0,..., K}, every
q(0/ox) € Q(RYN), and every J CH{0,..., K} with card J = k + 1, there exists
x € [x;]es such that ¢(8/0x)(x(f) — F)x) = 0.

Proof of Theorem 3.1. It only remains to generalize the preceding remark
to the case where x,,..., xx are not necessarily distinct. For k €{0,..., K},
let p, = (x;4,0,.,0, 1,0,.,0) e RV+%+1 where the unit is in the
N + k + 1st place. Let 7r: RV+K+1 — RV be the projection onto the first ¥
coordinates and let #*: FX(RY) — FX(RN+E+HL) be given by #*(f) = fom.

Since yy ,..., yx are independent, let i: FX(RN+K+1) — PE(RN+K+1) be the
map whose existence is proven in Remark 4.6 and define y: ¥X(RY) — P*(RY)

.....
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by m*ox = pon™ yx is well defined because for fe@X(RN), »*(f)e
FE(RN+K+) is independent of the last K -+ 1 variables. By Proposition 3.7
(in case K > 1), so is ¢ o w*(f). That is, ¢ o w*(f) is a polynomial of degree
at most K, in the first N coordinates of R¥+5+1 only,

Now choose fe €X(RN), q(6/ox) € QXRY), where ke{0,..., K}, and let
JC{0,..., K} with card J = k + 1. By Remark 4.6, let y € [ y;};; such that

g (L) 7 o X =4 (—%—) b e (1))
= ¢ (2) =)

Then g(8/8x)(x(f) — fYm(y)) = 0 and ()€ [x;}e; because #(p) = x;
for j€{0,..., K}.

Remark 4.7. Lemma 4.3 can be generalized to a statement about finite
families of functions and differential operators. Let S be a finite indexing
set and suppose { g.}es C FX(RY) such that T(g,) = O for every s S and
every T €2 ... x3 By . (B; has been defined only when x ,..., Xx are inde-
pendent.) Then, for every k €{0,..., K}, every indexed set {g,}.s C ¥RV},
and every J C{0,..., K} with card J = k + 1, there exists x € [x;};., such that
2 ses 45(0/0x) g{x) = 0.

Therefore, if {fi}es C FX(RY), then there exists x € [x;};o, such that
Dses 4:(0/9x)x(f) — f)(x) = 0. The method of the preceding proof of
Theorem 3.1 can be used to prove this when xg,..., xx are not necessarily
distinct.

As in Proposition 3.7, if .. q/0/ox)(f,) is identically zero, so is

ZseS q.s(a/ax)(X(fs))

Remark 4.8. The proof of Lemma 4.2 shows that, if x,,..., Xxx are in
general position in RY (that is, every subset of {x,,..., xx} of cardinality
N 4+ 1 is independent), then y(f) is well defined for fe FH(RY), where
H = minimum {K, N — 1}. This corresponds to the fact that the Hermite
interpolating polynomial x(f), at distinct points xg,..., Xy € R, is defined
for fe ¥%(R). In this case y is, of course, Lagrange interpolation.

Remark 4.9. We will sometimes use the notation y,, .. ,, to indicate the
dependence of y on the points of interpolation. For a fixed fe #X(RY),
consider the symmetric mapping from (RY)¥+1 to PX(RY) which is given by
X 5eees X > Xy (). The techniques used here can also be used to show
that this mapping is continuous.

Exampre 4.10. The conclusion of Thecrem 3.1 cannot be strengthened
to include non-homogeneous differential operators. For, let XK =1,
xp=(0,0), and x; = (1,0) e R% Define f(x, )R} by f(x,y) =
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6x* — 6x 4+ 1) y — 6x% 4 6x. x(f) is the zero polynomial. Yet if
g(¢/ox, o/ey) is the non-homogeneous operator f +— &ffdy + f,
q(0fex , 8/oy) f(x, 0) = 1 for all x€]0, 1].

5.

This section gives versions of y for interpolating complex analytic func-
tions and differential forms. C¥ is identified with R2V and a point
(21 5., zy) € CV has real and imaginary components (X ,..., Xn » Vi 5eeer Vn)-

PROPOSITION 5.1. Let NeN+, KeN, z,..,2x € CV, and let y be the
interpolation at (x4 , Yo)s-.., (Xx » V&) € R2Y given in Theorem 3.1.

For h: CY — C, K times continuously differentiable, let x(h) = x(f) + ix(g),
where h = f + ig, real and imaginary parts.

If h is analytic, so is x(h), that is, x(h) € PX(CV).

Proof. If K = 0, y(f) and x( g) are constants, so we may assume K € N+,
Then by Remark 4.7, since f -+ ig satisfies the Cauchy-Riemann equations,
of|ox, — 0g/dy, = 0 and &f/dy, + og/ox, = 0 for all ne{l,..., N}, so does
x(f) + ix( ).

Remark 5.2. For a fixed analytic 4:CY — C, the mapping from
(CV)*H — PX(C), which is given: by zy,..., zx = Xz,...z,(#) is continuous
because its real and imaginary parts are continuous. See Remark 4.9.

Remark 5.3. Consider the case where N = 1 and w,,..., wg are distinct
complex numbers. If A:C — C is analytic, y,,. . (") € PXC) and
Xu,...w (W(We) = h(wy) for k€{0,..., K}. As in the corresponding real case
(Lagrange interpolation) these properties uniquely determine yu,...u ().

Remark 5.4. The complex analytic analog of Proposition 3.9 holds.
Let y be the complex analytic interpolation at z,..., zz € C¥. If AeCy,
the dual of C¥, and A: C — C is analytic, then y(% o A) = () o A, where
i(h) is the complex analytic interpolation of % at the points A(zy),..., A(zx) € C.
We omit a proof of this; it is similar to the proof of Proposition 3.9.

Remark 5.5. We define an interpolation of differential forms. Notation
is explained in Remark 4.1. Let Ne N*, Ke N, xg,..., x, € R¥, and let y
be the interpolation of Theorem 3.1 at x; ,..., xx . Forn e N, let y: 4»X(RY) —
{w € A™YRY) s.t. w is a polynomial of degree <CK} be given by

X( > SoreoosReg A A )\s") = > X(fogeeosy) Ay A 00 A AL

1< <5, <N 18y <t <5, KN

Remark 5.6. If w is a closed form (dw is identically zero), then so is
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x(w), by a proof which uses Remark 4.7 in a manner similar to the proof of
Proposition 5.1, However, if w € AX(RY), then dw € A»-XYRY) so y(dw)
is not defined in general and the statement “y(dw) = dy(w)” is false.

6.

An application of y is given. Consider a sequence {,T}..n of distributions
in Z%RY), such that card supp I < K + 1 for all ¢ and lim,,
MaXgesupp,r {| X [} = 0. where supp, T is the support of 7. That is, {, 7} is a
sequence of linear combinations of <{X - 1 Dirac measures whose supports
tend to the origin. Let E C €¥(R¥) be the solution set of some differential
equation g(¢/ox)(f) = 0, where ¢ is 2 homogeneous operator and suppose
lim,.. {T(p)} exists for every pe E N PXRY). Under these hypotheses,
the following theorem says that lim,.., {,7(f)} exists for every f€ E.

THEOREM 6.1. Let Ne N+ and Ke N. Let { T}y be a sequence of distri-
butions in D¥(RY), each having finite support. For each ce N, let ,J = —1 +
card supp, 7’ and let supp,T == {; Yo s-s ¢ YVory CRY. For each ceN and
j€{0,..., J}, let M; be the order of T at ,y;, ond suppose that
Z;J:O (M; + 1) = K+ 1 for all ¢ and lim,..., maxjey,..., i leyil=0.

Explicitly for each ¢ € N, there exists a finite indexed set of real numbers

{caim}jego ..... TymeNNg.t. tm| < M,
such that
o Blml
J(f) = Eo mgw cim Wﬂc ¥s)
|m|<ch
for all fe GXRN).

Let F be any linear subspace of @71;0 O*(RY) such that, if ¢(6/0x) € F, then
each homogeneous part of q is also in F, and let

E = feCYRY)s.t. q (’a—av”) () = 0 for every q eF\.

Suppose that { T(p)}een converges for every p e En PX(RY). Then, for
each f'e€ E, {,.T(f)}oen converges to lim,o, {.T(xo{ )} where xo( f) is the Taylor
polynomial of f up to order K at the origin.

Proof. Since F is generated by its homogeneous elements, xo( f) € E and
limg,o, {cTO0( )} exists by the hypothesis on {,T}.

For each ¢ e N, choose ,x; ,..., .¥x € RY such that, for each je{0,..., ,J},
oXr = ,¥; for M; + 1 values of ke{0,.., K}. This is possible because

640/29/4-3
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Zj-io (M; + 1) = K+ 1. For each ceN, let ,y be the interpolation of
Theorem 3.1 at .x, ,..., oXg -

Given € > 0, it suffices to find C e N so large that | [ 7(f) — T(xo(f)] < €
for all ¢ = C, where T(xo(f)) = limy,e {TCr(f))}. Fix L > 0 so large
that, for each ¢ e N and each p € £ N PX(R") having the absolute value of
all coefficients <1, | .T(p)| < L.

" By Remark 4.9, the mapping from (RY)%+! to PX(RY) given by y, ,..., Yx >
Xuy.....u(2Lf]€) is continuous. Choose C e N so large that, for each ¢ > C,
(ox — xo)(2Lf]e) has the absolute value of each of its coefficients <1, and
also, for ¢ = C, | ;T (xo(f)) — T(xo( /) < €/2.

For all ¢, ,J(f) = T(;x(f)) because f — ,x(f) is flat of order ,M; at
oy for j€{0,..., J} (Remark 3.4). Therefore, for ¢ == C,

[T () — TGl < | T(ex — x)(f)]
+ [ TCo(f)) = TO(NI

<5+53

N m

because (,x — xo)(2Lf/€) has the absolute value of each coefficient <1
and also belongs to E, by Proposition 3.7, so

2Lf

€

| T =20 () | <L

from the definition of L.

Remark 6.2. The special case of the preceeding theorem for F = {0},
E = ¥X(RY) was essentially given by Glaeser in [4]. Bloom [1] gives the com-
plex analytic version, which may also be proven using Proposition 5.1.
x(f) is the same as the interpolation used there whenever e PX+(CY). In
that case, the method used in [1] to interpolate f coincides with the method
given here in the next section.

7.

Proposition 7.3 can be used to find y(f) without evaluating integrals,
whenever fis a polynomial.

Remark 7.1. Let W, ..., Wy be indeterminates. For M € N, there exist
unique polynomials.

o (Wo sees Wihsoos ox(Wo 5oeey W) € RIW ..., Wi,
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the ring of polynomials with real coefficients in K + 1 indeterminants, such
that

K
WM =Y Wy W) Wil for ke {0,..., K}. (1.2)

1=0

For uniqueness, if 7, ,..., 7¢ is another such family of polynomials, then by
Cramer’s rule,

1 WO ven WOK i
G TL)(WO sees W) I
1 Wy - Wi

for I €{0,..., K} and the van der Monde determinant is not zero. For existence,
if Me{0,...,K}, oy = 1 and o, = 0 if [ 7= M. If existence is proven up to
M > K, then the formula

K

WML = %" 7 (Wy ey W) - WM for k €{0,..., K}

=0

gives an inductive step, where —r; is the elementary symmetric polynomial
of degree 1 - 1.

If real numbers are substituted for W, ,..., Wi, then o,(x, ,..., Xz} is the
coefficient of x* in the Hermite interpolating polynomial at x; ,..., xz for
the function fe ¥X(R) given by f(x) = xM.

ProposiTioN 7.3. Let Ne N*, Ke N, and x, ,..., xx € RY. Also, let M e N

and define oy ,..., ox € R[W, ..., Wx]| by (7.2). Then, for each m e NN with
Im| =M,

M e
X ® ( : xm) — lm k “ (xkxm—k’
Qs nnes K
0 m! LeNN (m — k)!
M—-KL| &)
k<m

where oy, is the coefficient of V* in

Oartx (X Vi + 0 Xon Vv seees X Ve A+ 0 - X V).

. . k.
V..., Vy are indeterminates, V¢ = V;*

of x;, are (xz ,..., Xpn) for k €40,..., K}. Xz,

Cee V;f,” and the components
,,,,, ay 1S Interpolation at xq ,..., Xg .)

Proof. Let p: R — R be given by p(w) = wH, so for every (A ,..., Ay) =
AeRy and every (¥1,..., yn) = YERY, po A(¥) = Xnent imi<ae (M /m 1) ymA™,
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By Proposition 3.9,
Xag-ag( P © N ¥)
= Xalag)-- -2 DA ) (74

K
= Z Gz(x(n/\l + on}\N,---, xKl)‘l 4 KNAN)(ylAl + ey
1=0

Here, (... is interpolation in R! at A(xp),..., A(xx). For any fixed
meNY with |m| = M and each ke N¥" such that ¥ — K < | k| and
k < m, the coefficient of y™—* in the right-hand side of (7.4) is

O'M—|k|(x01)\1 e XONAN e XA o XgeAy) ¢ T_‘”ﬁ)”l“ Y

_ lm— k1! m—k+g_
19]=|%]
because o, is homogeneous of degree | k|. Hence the right-hand side

of (7.4) is

|m—k|!
%N (ENN A Pra— Y]

M—K|k|  [i]=|k|
k<m

Am~k+a) yme, (7.5)

Now, let S = (™5™ and choose A ,..., A\ € Ry and @ ,..., az € R such
that Z;:l a,p o ALy) = (M!/m!) y™ for every y e RY, That is, for je NV
with | /| = M, 25:1 aAs = 1if j = m and equals zero otherwise. Then by
linearity of x,,...., and applying (7.5),

M! . |m—k|! I
Xag--2x (—mT xm) (» = kg\(:N X m)’
M

for every y € RV,

Remark 7.6. The complex version of Proposition 7.3 can be stated and
proven by writing C rather than R and referring to Remark 5.4 rather than
Proposition 3.9.
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